Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
- URL: http://arxiv.org/abs/2406.04796v1
- Date: Fri, 7 Jun 2024 09:48:11 GMT
- Title: Robust Inference of Dynamic Covariance Using Wishart Processes and Sequential Monte Carlo
- Authors: Hester Huijsdens, David Leeftink, Linda Geerligs, Max Hinne,
- Abstract summary: We introduce a Sequential Monte Carlo (SMC) sampler for the Wishart process.
We show that SMC sampling results in the most robust estimates and out-of-sample predictions of dynamic covariance.
We demonstrate the practical applicability of our proposed approach on a dataset of clinical depression.
- Score: 2.6347238599620115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Several disciplines, such as econometrics, neuroscience, and computational psychology, study the dynamic interactions between variables over time. A Bayesian nonparametric model known as the Wishart process has been shown to be effective in this situation, but its inference remains highly challenging. In this work, we introduce a Sequential Monte Carlo (SMC) sampler for the Wishart process, and show how it compares to conventional inference approaches, namely MCMC and variational inference. Using simulations we show that SMC sampling results in the most robust estimates and out-of-sample predictions of dynamic covariance. SMC especially outperforms the alternative approaches when using composite covariance functions with correlated parameters. We demonstrate the practical applicability of our proposed approach on a dataset of clinical depression (n=1), and show how using an accurate representation of the posterior distribution can be used to test for dynamics on covariance
Related papers
- Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Free-Form Variational Inference for Gaussian Process State-Space Models [21.644570034208506]
We propose a new method for inference in Bayesian GPSSMs.
Our method is based on freeform variational inference via inducing Hamiltonian Monte Carlo.
We show that our approach can learn transition dynamics and latent states more accurately than competing methods.
arXiv Detail & Related papers (2023-02-20T11:34:16Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems [26.744964200606784]
We propose a novel inference algorithm utilizing a Markov Chain Monte Carlo approach.
The presented Gibbs sampler allows to efficiently obtain samples from the exact continuous-time posterior processes.
arXiv Detail & Related papers (2022-05-18T09:03:00Z) - Surrogate Likelihoods for Variational Annealed Importance Sampling [11.144915453864854]
We introduce a surrogate likelihood that can be learned jointly with other variational parameters.
We show that our method performs well in practice and that it is well-suited for black-box inference in probabilistic programming frameworks.
arXiv Detail & Related papers (2021-12-22T19:49:45Z) - MCCE: Monte Carlo sampling of realistic counterfactual explanations [2.156170153103442]
MCCE is a novel on-manifold, actionable and valid counterfactual explanation method.
It generates on-manifold, actionable and valid counterfactuals by modeling the joint distribution of the mutable features.
We compare MCCE with a range of state-of-the-art on-manifold counterfactual methods using four well-known data sets.
arXiv Detail & Related papers (2021-11-18T16:40:44Z) - Deterministic Gibbs Sampling via Ordinary Differential Equations [77.42706423573573]
This paper presents a general construction of deterministic measure-preserving dynamics using autonomous ODEs and tools from differential geometry.
We show how Hybrid Monte Carlo and other deterministic samplers follow as special cases of our theory.
arXiv Detail & Related papers (2021-06-18T15:36:09Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
Hybrid Monte Carlo is a powerful Markov Chain Monte Carlo method for sampling from complex continuous distributions.
We introduce a new approach based on augmenting Monte Carlo methods with SurVAE Flows to sample from discrete distributions.
We demonstrate the efficacy of our algorithm on a range of examples from statistics, computational physics and machine learning, and observe improvements compared to alternative algorithms.
arXiv Detail & Related papers (2021-02-04T02:21:08Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.