IOR: Inversed Objects Replay for Incremental Object Detection
- URL: http://arxiv.org/abs/2406.04829v4
- Date: Fri, 17 Jan 2025 03:39:23 GMT
- Title: IOR: Inversed Objects Replay for Incremental Object Detection
- Authors: Zijia An, Boyu Diao, Libo Huang, Ruiqi Liu, Zhulin An, Yongjun Xu,
- Abstract summary: Many IOD methods rely on the assumption that unlabeled old-class objects may co-occur with labeled new-class objects in the incremental data.
This paper argues that previous generation-based IOD suffers from redundancy, both in the use of generative models, which require additional training and storage, and in the overproduction of generated samples.
We propose augmented replay to reuse the objects in generated samples, reducing redundant generations.
- Score: 22.415936450558334
- License:
- Abstract: Existing Incremental Object Detection (IOD) methods partially alleviate catastrophic forgetting when incrementally detecting new objects in real-world scenarios. However, many of these methods rely on the assumption that unlabeled old-class objects may co-occur with labeled new-class objects in the incremental data. When unlabeled old-class objects are absent, the performance of existing methods tends to degrade. The absence can be mitigated by generating old-class samples, but it incurs high costs. This paper argues that previous generation-based IOD suffers from redundancy, both in the use of generative models, which require additional training and storage, and in the overproduction of generated samples, many of which do not contribute significantly to performance improvements. To eliminate the redundancy, we propose Inversed Objects Replay (IOR). Specifically, we generate old-class samples by inversing the original detectors, thus eliminating the necessity of training and storing additional generative models. We propose augmented replay to reuse the objects in generated samples, reducing redundant generations. Moreover, we propose high-value knowledge distillation focusing on the positions of old-class objects overwhelmed by the background, which transfers the knowledge to the incremental detector. Extensive experiments conducted on MS COCO 2017 demonstrate that our method can efficiently improve detection performance in IOD scenarios with the absence of old-class objects.
Related papers
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis [21.348252135252412]
Current Non-Exemplar Class-Incremental Learning (NECIL) methods mitigate forgetting by storing a single prototype per class.
We propose a more efficient NECIL method that replaces prototypes with synthesized retrospective features for old classes.
Our method significantly improves the efficiency of non-exemplar class-incremental learning and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-03T07:19:11Z) - PASS++: A Dual Bias Reduction Framework for Non-Exemplar Class-Incremental Learning [49.240408681098906]
Class-incremental learning (CIL) aims to recognize new classes incrementally while maintaining the discriminability of old classes.
Most existing CIL methods are exemplar-based, i.e., storing a part of old data for retraining.
We present a simple and novel dual bias reduction framework that employs self-supervised transformation (SST) in input space and prototype augmentation (protoAug) in deep feature space.
arXiv Detail & Related papers (2024-07-19T05:03:16Z) - SDDGR: Stable Diffusion-based Deep Generative Replay for Class Incremental Object Detection [8.423544221521201]
We propose a novel approach called stable diffusion deep generative replay (SDDGR) for class incremental object detection (CIOD)
Our method utilizes a diffusion-based generative model with pre-trained text-to-diffusion networks to generate realistic and diverse synthetic images.
Our approach includes pseudo-labeling for old objects within new task images, preventing misclassification as background elements.
arXiv Detail & Related papers (2024-02-27T09:01:03Z) - DualTeacher: Bridging Coexistence of Unlabelled Classes for
Semi-supervised Incremental Object Detection [53.8061502411777]
In real-world applications, an object detector often encounters object instances from new classes and needs to accommodate them effectively.
Previous work formulated this critical problem as incremental object detection (IOD), which assumes the object instances of new classes to be fully annotated in incremental data.
We consider a more realistic setting named semi-supervised IOD (SSIOD), where the object detector needs to learn new classes incrementally from a few labelled data and massive unlabelled data.
arXiv Detail & Related papers (2023-12-13T10:46:14Z) - Identification of Novel Classes for Improving Few-Shot Object Detection [12.013345715187285]
Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during training to improve FSOD performance.
Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.
arXiv Detail & Related papers (2023-03-18T14:12:52Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Multi-View Correlation Distillation for Incremental Object Detection [12.536640582318949]
We propose a novel textbfMulti-textbfView textbfCorrelation textbfDistillation (MVCD) based incremental object detection method.
arXiv Detail & Related papers (2021-07-05T04:36:33Z) - Robust and Accurate Object Detection via Adversarial Learning [111.36192453882195]
This work augments the fine-tuning stage for object detectors by exploring adversarial examples.
Our approach boosts the performance of state-of-the-art EfficientDets by +1.1 mAP on the object detection benchmark.
arXiv Detail & Related papers (2021-03-23T19:45:26Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.