SDDGR: Stable Diffusion-based Deep Generative Replay for Class Incremental Object Detection
- URL: http://arxiv.org/abs/2402.17323v2
- Date: Tue, 7 May 2024 14:19:13 GMT
- Title: SDDGR: Stable Diffusion-based Deep Generative Replay for Class Incremental Object Detection
- Authors: Junsu Kim, Hoseong Cho, Jihyeon Kim, Yihalem Yimolal Tiruneh, Seungryul Baek,
- Abstract summary: We propose a novel approach called stable diffusion deep generative replay (SDDGR) for class incremental object detection (CIOD)
Our method utilizes a diffusion-based generative model with pre-trained text-to-diffusion networks to generate realistic and diverse synthetic images.
Our approach includes pseudo-labeling for old objects within new task images, preventing misclassification as background elements.
- Score: 8.423544221521201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of class incremental learning (CIL), generative replay has become increasingly prominent as a method to mitigate the catastrophic forgetting, alongside the continuous improvements in generative models. However, its application in class incremental object detection (CIOD) has been significantly limited, primarily due to the complexities of scenes involving multiple labels. In this paper, we propose a novel approach called stable diffusion deep generative replay (SDDGR) for CIOD. Our method utilizes a diffusion-based generative model with pre-trained text-to-diffusion networks to generate realistic and diverse synthetic images. SDDGR incorporates an iterative refinement strategy to produce high-quality images encompassing old classes. Additionally, we adopt an L2 knowledge distillation technique to improve the retention of prior knowledge in synthetic images. Furthermore, our approach includes pseudo-labeling for old objects within new task images, preventing misclassification as background elements. Extensive experiments on the COCO 2017 dataset demonstrate that SDDGR significantly outperforms existing algorithms, achieving a new state-of-the-art in various CIOD scenarios. The source code will be made available to the public.
Related papers
- InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images.
We introduce a pioneering fine-tuning-based technique, termed InfRS, designed to facilitate the incremental learning of novel classes.
We develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem.
arXiv Detail & Related papers (2024-05-18T13:39:50Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models.
In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques.
We introduce an innovative inter-class data augmentation method known as Diff-Mix, which enriches the dataset by performing image translations between classes.
arXiv Detail & Related papers (2024-03-28T17:23:45Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Class-Prototype Conditional Diffusion Model with Gradient Projection for Continual Learning [20.175586324567025]
Mitigating catastrophic forgetting is a key hurdle in continual learning.
A major issue is the deterioration in the quality of generated data compared to the original.
We propose a GR-based approach for continual learning that enhances image quality in generators.
arXiv Detail & Related papers (2023-12-10T17:39:42Z) - GeNIe: Generative Hard Negative Images Through Diffusion [16.619150568764262]
Recent advances in generative AI have enabled more sophisticated augmentation techniques that produce data resembling natural images.
We introduce GeNIe, a novel augmentation method which leverages a latent diffusion model conditioned on a text prompt to generate challenging augmentations.
Our experiments demonstrate the effectiveness of our novel augmentation method and its superior performance over the prior art.
arXiv Detail & Related papers (2023-12-05T07:34:30Z) - DiffusePast: Diffusion-based Generative Replay for Class Incremental
Semantic Segmentation [73.54038780856554]
Class Incremental Semantic (CISS) extends the traditional segmentation task by incrementally learning newly added classes.
Previous work has introduced generative replay, which involves replaying old class samples generated from a pre-trained GAN.
We propose DiffusePast, a novel framework featuring a diffusion-based generative replay module that generates semantically accurate images with more reliable masks guided by different instructions.
arXiv Detail & Related papers (2023-08-02T13:13:18Z) - Local Magnification for Data and Feature Augmentation [53.04028225837681]
We propose an easy-to-implement and model-free data augmentation method called Local Magnification (LOMA)
LOMA generates additional training data by randomly magnifying a local area of the image.
Experiments show that our proposed LOMA, though straightforward, can be combined with standard data augmentation to significantly improve the performance on image classification and object detection.
arXiv Detail & Related papers (2022-11-15T02:51:59Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
We consider the high-impact problem of Data-Free Class-Incremental Learning (DFCIL)
We propose a novel incremental distillation strategy for DFCIL, contributing a modified cross-entropy training and importance-weighted feature distillation.
Our method results in up to a 25.1% increase in final task accuracy (absolute difference) compared to SOTA DFCIL methods for common class-incremental benchmarks.
arXiv Detail & Related papers (2021-06-17T17:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.