論文の概要: Perturb-and-Project: Differentially Private Similarities and Marginals
- arxiv url: http://arxiv.org/abs/2406.04868v3
- Date: Wed, 7 Aug 2024 22:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 19:57:18.344199
- Title: Perturb-and-Project: Differentially Private Similarities and Marginals
- Title(参考訳): Perturb-and-Project:差分的にプライベートな類似点とマージナル
- Authors: Vincent Cohen-Addad, Tommaso d'Orsi, Alessandro Epasto, Vahab Mirrokni, Peilin Zhong,
- Abstract要約: 差分プライバシーのための入力摂動フレームワークを再検討し、入力にノイズを付加する。
まず、ペアワイズ・コサイン類似性をプライベートにリリースするための新しい効率的なアルゴリズムを設計する。
我々は,$k$の辺縁クエリを$n$の機能に対して計算する新しいアルゴリズムを導出する。
- 参考スコア(独自算出の注目度): 73.98880839337873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit the input perturbations framework for differential privacy where noise is added to the input $A\in \mathcal{S}$ and the result is then projected back to the space of admissible datasets $\mathcal{S}$. Through this framework, we first design novel efficient algorithms to privately release pair-wise cosine similarities. Second, we derive a novel algorithm to compute $k$-way marginal queries over $n$ features. Prior work could achieve comparable guarantees only for $k$ even. Furthermore, we extend our results to $t$-sparse datasets, where our efficient algorithms yields novel, stronger guarantees whenever $t\le n^{5/6}/\log n\,.$ Finally, we provide a theoretical perspective on why \textit{fast} input perturbation algorithms works well in practice. The key technical ingredients behind our results are tight sum-of-squares certificates upper bounding the Gaussian complexity of sets of solutions.
- Abstract(参考訳): A\in \mathcal{S}$にノイズが付加され、その結果が許容可能なデータセットの空間に投影される、差分プライバシーのための入力摂動フレームワークを再検討する。
このフレームワークを通じて、ペアワイズ・コサイン類似性をプライベートにリリースする、新しい効率的なアルゴリズムを最初に設計する。
第二に、$k$の辺縁クエリを$n$の機能に対して計算する新しいアルゴリズムを導出する。
以前の作業で同等の保証は$k$ evenでしか得られなかった。
さらに、我々のアルゴリズムは、$t\le n^{5/6}/\log n\,
最後に、なぜ textit{fast} 入力摂動アルゴリズムが実際にうまく機能するのかに関する理論的見解を提供する。
結果の背後にある重要な技術的要素は、解の集合のガウス的複雑さを上限とする2乗証明の厳密な和である。
関連論文リスト
- Fast John Ellipsoid Computation with Differential Privacy Optimization [34.437362489150246]
高速なジョン楕円体計算のための微分プライベートアルゴリズムを提案する。
提案手法は, ノイズ摂動とスケッチ処理を統合し, スコアサンプリングを活用し, 効率とプライバシの両立を図る。
論文 参考訳(メタデータ) (2024-08-12T03:47:55Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
階層クラスタリングのための微分プライベート近似アルゴリズムについて検討する。
例えば、$epsilon$-DPアルゴリズムは入力データセットに対して$O(|V|2/epsilon)$-additiveエラーを示さなければならない。
本稿では,ブロックを正確に復元する1+o(1)$近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-31T19:14:30Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
効率的なプライベート推定アルゴリズムを設計するための一般的なツール。
最初の効率的な$(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery。
論文 参考訳(メタデータ) (2023-01-11T09:12:28Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
我々は,最大$O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$,$epsilon$はプライバシ保証であることを示す。
最悪の場合の保証は、最先端のプライベートクラスタリング手法よりも悪いが、提案するアルゴリズムは実用的である。
論文 参考訳(メタデータ) (2022-06-17T09:24:41Z) - Efficient Mean Estimation with Pure Differential Privacy via a
Sum-of-Squares Exponential Mechanism [16.996435043565594]
純微分プライバシーを受ける独立サンプルの共分散で$d$正確率分布の平均を推定するアルゴリズムを初めて与える。
我々の主な手法は、強力なSum of Squares法(SoS)を用いて微分プライベートアルゴリズムを設計する新しいアプローチである。
論文 参考訳(メタデータ) (2021-11-25T09:31:15Z) - Optimal and Efficient Dynamic Regret Algorithms for Non-Stationary
Dueling Bandits [27.279654173896372]
我々は,非定常的あるいは時間的に異なる選好の下で,$K$のDueling Banditsにおける空力的後悔の最小化問題について検討した。
これは、エージェントが各ラウンドで一対のアイテムを選択し、このペアに対する相対的な二項のウィンロスフィードバックのみを観察するオンライン学習設定である。
論文 参考訳(メタデータ) (2021-11-06T16:46:55Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
テュバコフ雑音の存在下でのハーフスペースの学習可能性について検討する。
真半空間に関して誤分類誤差$epsilon$を達成するアルゴリズムを与える。
論文 参考訳(メタデータ) (2020-06-11T14:25:02Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
我々は、$det(sum_i in Sv_i v_i v_itop)$が最大になるような基底を$S$$$$M$とする問題を研究する。
この問題は、実験的なデザイン、商品の公平な割り当て、ネットワーク設計、機械学習など、さまざまな分野に現れている。
論文 参考訳(メタデータ) (2020-04-16T19:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。