論文の概要: InstructNav: Zero-shot System for Generic Instruction Navigation in Unexplored Environment
- arxiv url: http://arxiv.org/abs/2406.04882v1
- Date: Fri, 7 Jun 2024 12:26:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 14:11:13.796524
- Title: InstructNav: Zero-shot System for Generic Instruction Navigation in Unexplored Environment
- Title(参考訳): InstructNav: 未知環境におけるジェネリックインストラクションナビゲーションのためのゼロショットシステム
- Authors: Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, Hao Dong,
- Abstract要約: 本研究では,汎用的な命令ナビゲーションシステムであるInstructNavを提案する。
InstructNavは、ナビゲーショントレーニングやビルド済みのマップを使わずに、さまざまな命令ナビゲーションタスクを最初に処理する。
InstructNavでは、R2R-CEタスクを初めてゼロショットで完了し、多くのタスク学習方法より優れています。
- 参考スコア(独自算出の注目度): 5.43847693345519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling robots to navigate following diverse language instructions in unexplored environments is an attractive goal for human-robot interaction. However, this goal is challenging because different navigation tasks require different strategies. The scarcity of instruction navigation data hinders training an instruction navigation model with varied strategies. Therefore, previous methods are all constrained to one specific type of navigation instruction. In this work, we propose InstructNav, a generic instruction navigation system. InstructNav makes the first endeavor to handle various instruction navigation tasks without any navigation training or pre-built maps. To reach this goal, we introduce Dynamic Chain-of-Navigation (DCoN) to unify the planning process for different types of navigation instructions. Furthermore, we propose Multi-sourced Value Maps to model key elements in instruction navigation so that linguistic DCoN planning can be converted into robot actionable trajectories. With InstructNav, we complete the R2R-CE task in a zero-shot way for the first time and outperform many task-training methods. Besides, InstructNav also surpasses the previous SOTA method by 10.48% on the zero-shot Habitat ObjNav and by 86.34% on demand-driven navigation DDN. Real robot experiments on diverse indoor scenes further demonstrate our method's robustness in coping with the environment and instruction variations.
- Abstract(参考訳): 探索されていない環境で、多様な言語指示に従うロボットをナビゲートすることは、人間とロボットの相互作用にとって魅力的な目標である。
しかし、異なるナビゲーションタスクは異なる戦略を必要とするため、この目標は難しい。
指示ナビゲーションデータの不足は、様々な戦略で指示ナビゲーションモデルを訓練する妨げとなる。
したがって、従来の手法はすべて、特定の種類のナビゲーション命令に制約される。
本研究では,汎用的な命令ナビゲーションシステムであるInstructNavを提案する。
InstructNavは、ナビゲーショントレーニングやビルド済みのマップを使わずに、さまざまな命令ナビゲーションタスクを最初に処理する。
この目標を達成するために、異なる種類のナビゲーション命令の計画プロセスを統合するために、ダイナミック・チェーン・オブ・ナビゲーション(DCoN)を導入する。
さらに,命令ナビゲーションにおける重要な要素をモデル化して,言語的DCoN計画をロボットの動作可能な軌道に変換するためのマルチソース値マップを提案する。
InstructNavでは、R2R-CEタスクを初めてゼロショットで完了し、多くのタスク学習方法より優れています。
さらに、InstructNavは、ゼロショットのHabitat ObjNavで10.48%、需要駆動ナビゲーションDDNで86.34%、以前のSOTAメソッドを10.48%上回る。
屋内の多様なシーンにおける実ロボット実験は、環境に対処する上での手法の頑健さと指導のバリエーションをさらに示している。
関連論文リスト
- SayNav: Grounding Large Language Models for Dynamic Planning to Navigation in New Environments [14.179677726976056]
SayNavは、Large Language Models(LLM)からの人間の知識を活用して、複雑なナビゲーションタスクを効率的に一般化する新しいアプローチである。
SayNavは最先端の結果を達成し、成功率の点で強烈な地道的な仮定でオラクルベースのベースラインを8%以上上回ります。
論文 参考訳(メタデータ) (2023-09-08T02:24:37Z) - $A^2$Nav: Action-Aware Zero-Shot Robot Navigation by Exploiting
Vision-and-Language Ability of Foundation Models [89.64729024399634]
本研究では,ゼロショット視覚言語ナビゲーション(ZS-VLN)の課題について検討する。
通常、命令は複雑な文法構造を持ち、しばしば様々な行動記述を含む。
これらのアクション要求を正しく理解し実行する方法は重要な問題であり、アノテーション付きデータがないため、さらに困難になる。
論文 参考訳(メタデータ) (2023-08-15T19:01:19Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
視覚言語ナビゲーションは、エージェントが環境中をナビゲートするための指示に従う必要があるタスクである。
本研究では,1)環境を抽象化し,長距離航法計画を生成する能力,2)連続環境における障害物回避制御能力の2つの重要なスキルに焦点を当てたETPNavを提案する。
ETPNavは、R2R-CEとRxR-CEデータセットの先行技術よりも10%以上、20%改善されている。
論文 参考訳(メタデータ) (2023-04-06T13:07:17Z) - Lana: A Language-Capable Navigator for Instruction Following and
Generation [70.76686546473994]
LANAは言語対応のナビゲーションエージェントで、人書きのナビゲーションコマンドを実行し、人へのルート記述を提供することができる。
我々は、最近の高度なタスク固有解と比較して、LANAが命令追従と経路記述の両方においてより良い性能を発揮することを実証的に検証した。
加えて、言語生成能力が与えられたLANAは、人間の行動を説明し、人間のウェイフィンディングを支援することができる。
論文 参考訳(メタデータ) (2023-03-15T07:21:28Z) - Towards Versatile Embodied Navigation [120.73460380993305]
ウィーンは多機能なエンボディナビゲーションエージェントであり、同時に4つのナビゲーションタスクを1つのモデルで実行することを学ぶ。
視覚的なナビゲーションタスクを個別に学習するのに対し、エージェントは複雑さを減らして同等またはそれ以上の性能を達成することを実証的に実証した。
論文 参考訳(メタデータ) (2022-10-30T11:53:49Z) - Adversarial Reinforced Instruction Attacker for Robust Vision-Language
Navigation [145.84123197129298]
自然言語に基づくナビゲーションタスクでは,言語指導が重要な役割を担っている。
より堅牢なナビゲータを訓練し、長い指導から重要な要素を動的に抽出する。
具体的には,航法士が間違った目標に移動することを誤認することを学習する動的強化命令攻撃装置(DR-Attacker)を提案する。
論文 参考訳(メタデータ) (2021-07-23T14:11:31Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
視覚言語ナビゲーション(VLN)は、エージェントがフォトリアリスティックな環境の中でナビゲーションの指示を行うためのタスクである。
VLNの重要な課題の1つは、曖昧な指示による不確実性を緩和し、環境の観察を不十分にすることで、堅牢なナビゲーションを行う方法である。
この研究は、人間のナビゲーション行動からインスピレーションを得て、よりインテリジェントなVLNポリシーのためのアクティブな情報収集能力を持つエージェントを提供する。
論文 参考訳(メタデータ) (2020-07-15T23:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。