論文の概要: RU-AI: A Large Multimodal Dataset for Machine-Generated Content Detection
- arxiv url: http://arxiv.org/abs/2406.04906v3
- Date: Tue, 18 Feb 2025 06:29:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 17:59:03.207017
- Title: RU-AI: A Large Multimodal Dataset for Machine-Generated Content Detection
- Title(参考訳): RU-AI: マシン生成コンテンツ検出のための大規模マルチモーダルデータセット
- Authors: Liting Huang, Zhihao Zhang, Yiran Zhang, Xiyue Zhou, Shoujin Wang,
- Abstract要約: 本稿では,テキスト,画像,音声中の機械生成コンテンツを堅牢かつ効果的に検出するための大規模マルチモーダルデータセットであるRU-AIを紹介する。
私たちのデータセットは、Flickr8K、COCO、Places205という3つの大きな公開データセットに基づいて構築されています。
その結果,既存のモデルでは,データセットの正確かつ堅牢な検出に苦慮していることが明らかとなった。
- 参考スコア(独自算出の注目度): 11.265512559447986
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent generative AI models' capability of creating realistic and human-like content is significantly transforming the ways in which people communicate, create and work. The machine-generated content is a double-edged sword. On one hand, it can benefit the society when used appropriately. On the other hand, it may mislead people, posing threats to the society, especially when mixed together with natural content created by humans. Hence, there is an urgent need to develop effective methods to detect machine-generated content. However, the lack of aligned multimodal datasets inhibited the development of such methods, particularly in triple-modality settings (e.g., text, image, and voice). In this paper, we introduce RU-AI, a new large-scale multimodal dataset for robust and effective detection of machine-generated content in text, image and voice. Our dataset is constructed on the basis of three large publicly available datasets: Flickr8K, COCO and Places205, by adding their corresponding AI duplicates, resulting in a total of 1,475,370 instances. In addition, we created an additional noise variant of the dataset for testing the robustness of detection models. We conducted extensive experiments with the current SOTA detection methods on our dataset. The results reveal that existing models still struggle to achieve accurate and robust detection on our dataset. We hope that this new data set can promote research in the field of machine-generated content detection, fostering the responsible use of generative AI. The source code and datasets are available at https://github.com/ZhihaoZhang97/RU-AI.
- Abstract(参考訳): 最近のジェネレーティブAIモデルの、リアルで人間らしいコンテンツを作る能力は、人々がコミュニケーションし、創造し、働く方法を大きく変えている。
機械生成物は両刃の剣である。
一方、適切に使用すれば社会に利益をもたらす可能性がある。
一方、人間が生み出した自然のコンテンツと混ざり合うと、社会に脅かされ、人を誤解させる恐れがある。
したがって、機械生成コンテンツを検出する効果的な方法を開発する必要がある。
しかし、アライメントされたマルチモーダルデータセットの欠如は、特に三重モード設定(例えば、テキスト、画像、音声)において、そのような手法の開発を阻害した。
本稿では,テキスト,画像,音声中の機械生成コンテンツを堅牢かつ効果的に検出する大規模マルチモーダルデータセットであるRU-AIを紹介する。
我々のデータセットは、Flickr8K、COCO、Places205の3つの大規模な公開データセットに基づいて構築されており、対応するAI複製を追加して、合計1,475,370のインスタンスを生成する。
さらに、検出モデルのロバスト性をテストするために、データセットの新たなノイズ変種を作成しました。
我々は,現在のSOTA検出手法をデータセット上で広範囲に実験した。
その結果,既存のモデルでは,データセットの正確かつ堅牢な検出に苦慮していることが明らかとなった。
この新しいデータセットは、機械生成コンテンツ検出の分野での研究を促進し、生成AIの責任ある利用を促進することを願っている。
ソースコードとデータセットはhttps://github.com/ZhihaoZhang97/RU-AIで公開されている。
関連論文リスト
- Are AI Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts [0.0]
AIフラグメントを備えた膨大な数の検出器とコレクションが出現している。
しかし、そのような検出器の品質は野生では劇的に低下する傾向にある。
本稿では,AI生成フラグメントを含むデータセットの品質を評価する手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T17:59:57Z) - Continual Learning for Multimodal Data Fusion of a Soft Gripper [1.0589208420411014]
あるデータモダリティに基づいてトレーニングされたモデルは、異なるモダリティでテストした場合、しばしば失敗する。
異なるデータモダリティを漸進的に学習できる連続学習アルゴリズムを提案する。
我々は、アルゴリズムの有効性を、挑戦的なカスタムマルチモーダルデータセット上で評価する。
論文 参考訳(メタデータ) (2024-09-20T09:53:27Z) - SK-VQA: Synthetic Knowledge Generation at Scale for Training Context-Augmented Multimodal LLMs [6.879945062426145]
SK-VQAは200万以上の質問応答対を含む大規模な合成マルチモーダルデータセットである。
我々の合成データセットは、挑戦的なベンチマークとして機能するだけでなく、既存の生成的マルチモーダルモデルを文脈拡張世代に適用する上でも非常に効果的であることを示す。
論文 参考訳(メタデータ) (2024-06-28T01:14:43Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - MASSTAR: A Multi-Modal and Large-Scale Scene Dataset with a Versatile Toolchain for Surface Prediction and Completion [25.44529512862336]
MASSTARはマルチモーダルなlArgeスケールのシーンデータセットであり、サーフAce predictionと完了のためのVerSatile Toolchainを備えている。
環境から生の3Dデータを処理するための汎用的で効率的なツールチェーンを開発した。
実世界の部分的なデータを含む1000以上のシーンレベルのモデルからなるサンプルデータセットを生成する。
論文 参考訳(メタデータ) (2024-03-18T11:35:18Z) - MC-DBN: A Deep Belief Network-Based Model for Modality Completion [3.7020486533725605]
我々は、MC-DBN(Modality Completion Deep Belief Network Based Model)を提案する。
このアプローチは、完全なデータの暗黙的な特徴を利用して、それ自体と追加の不完全なデータの間のギャップを補う。
拡張されたマルチモーダルデータは、実世界のダイナミックな性質と密接に一致し、モデルの有効性を高める。
論文 参考訳(メタデータ) (2024-02-15T08:21:50Z) - IMUGPT 2.0: Language-Based Cross Modality Transfer for Sensor-Based
Human Activity Recognition [0.19791587637442667]
クロスモーダリティ転送アプローチは、既存のデータセットを、ビデオのようなソースモーダリティからターゲットモーダリティ(IMU)に変換する。
我々はIMUGPTに2つの新しい拡張を導入し、実用的なHARアプリケーションシナリオの利用を拡大した。
我々の多様性指標は、仮想IMUデータの生成に必要な労力を少なくとも50%削減できることを示した。
論文 参考訳(メタデータ) (2024-02-01T22:37:33Z) - DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control [68.14798033899955]
大規模で事前訓練された潜伏拡散モデル(LDM)は、創造的コンテンツを生成できる異常な能力を示した。
しかし、それらは例えば、セマンティックセグメンテーションのような知覚スタックのタスクを改善するために、大規模なデータジェネレータとして使用できますか?
自律運転の文脈でこの疑問を考察し、「はい」という言い換えで答える。
論文 参考訳(メタデータ) (2023-12-05T18:34:12Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
本研究の目的は、AI生成画像の普遍的検出のための事前学習された視覚言語モデル(VLM)の可能性を探ることである。
我々は,CLIP機能に基づく軽量な検出戦略を開発し,その性能を様々な難易度シナリオで検証する。
論文 参考訳(メタデータ) (2023-11-30T21:11:20Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
記述的なテキストクエリーを与えられたテキストベースの人物検索は、画像ギャラリーからベストマッチした人物を検索することを目的としている。
このようなクロスモーダル検索タスクは、重要なモダリティギャップ、きめ細かい相違、注釈付きデータの不十分さのため、かなり難しい。
本稿では,テキストに基づく人物検索のための2つのトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-11-15T16:26:49Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
合成画像検索(CIR)の問題点を考察する。
テキストや画像などのマルチモーダル情報を融合し、クエリにマッチする画像を正確に検索し、ユーザの表現能力を拡張できるモデルをトレーニングすることを目的としている。
論文 参考訳(メタデータ) (2023-06-12T17:56:01Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - Exploiting the Potential of Datasets: A Data-Centric Approach for Model
Robustness [48.70325679650579]
本稿では,既存のディープニューラルネットワークの多くに有効であるデータセット拡張のための新しいアルゴリズムを提案する。
Alibaba GroupとTsinghua Universityが主催するデータ中心の堅牢な学習コンペで、私たちのアルゴリズムは3000以上の競合企業から3位に入った。
論文 参考訳(メタデータ) (2022-03-10T12:16:32Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
本稿では,オブジェクト間の関係のモデル化を継続するregradという新しいデータセットを提案する。
データセットは2D画像と3Dポイントクラウドの両方で収集されます。
ユーザは、好きなだけ多くのデータを生成するために、自由に独自のオブジェクトモデルをインポートできる。
論文 参考訳(メタデータ) (2021-04-29T05:31:21Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。