論文の概要: MA-AVT: Modality Alignment for Parameter-Efficient Audio-Visual Transformers
- arxiv url: http://arxiv.org/abs/2406.04930v1
- Date: Fri, 7 Jun 2024 13:35:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 13:51:43.673225
- Title: MA-AVT: Modality Alignment for Parameter-Efficient Audio-Visual Transformers
- Title(参考訳): MA-AVT:パラメータ効率の良いオーディオ・ビジュアル・トランスのためのモダリティアライメント
- Authors: Tanvir Mahmud, Shentong Mo, Yapeng Tian, Diana Marculescu,
- Abstract要約: マルチモーダルなセマンティックな特徴に対して,深いモーダルアライメントを用いたパラメータ効率の高いオーディオ視覚変換器MA-AVTを提案する。
具体的には,2つのモダリティを凍結したモダリティシェード変圧器で整列するための共同一様・多モードトークン学習を導入する。
ユニモーダルエンコーダの出力から得られた粗い特徴のみを整列する以前の作業とは異なり、粗大から細小の階層的特徴を整列するブロックワイドコントラスト学習を導入する。
- 参考スコア(独自算出の注目度): 41.54004590821323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in pre-trained vision transformers have shown promise in parameter-efficient audio-visual learning without audio pre-training. However, few studies have investigated effective methods for aligning multimodal features in parameter-efficient audio-visual transformers. In this paper, we propose MA-AVT, a new parameter-efficient audio-visual transformer employing deep modality alignment for corresponding multimodal semantic features. Specifically, we introduce joint unimodal and multimodal token learning for aligning the two modalities with a frozen modality-shared transformer. This allows the model to learn separate representations for each modality, while also attending to the cross-modal relationships between them. In addition, unlike prior work that only aligns coarse features from the output of unimodal encoders, we introduce blockwise contrastive learning to align coarse-to-fine-grain hierarchical features throughout the encoding phase. Furthermore, to suppress the background features in each modality from foreground matched audio-visual features, we introduce a robust discriminative foreground mining scheme. Through extensive experiments on benchmark AVE, VGGSound, and CREMA-D datasets, we achieve considerable performance improvements over SOTA methods.
- Abstract(参考訳): 事前学習型視覚変換器の最近の進歩は、パラメータ効率のよい音声視覚学習において、音声事前学習を伴わない可能性を示している。
しかし,パラメータ効率のよい音声・視覚変換器におけるマルチモーダル特徴の整合性について検討する研究はほとんどない。
本稿では,MA-AVTを提案する。MA-AVTは,マルチモーダル・セマンティックな特徴に対して,深いモーダルアライメントを用いたパラメータ効率の高いオーディオ・ビジュアル・トランスフォーマである。
具体的には,2つのモダリティを凍結したモダリティシェード変圧器で整列するための共同一様・多モードトークン学習を導入する。
これにより、モデルは各モダリティの別々の表現を学習でき、またそれらの間の相互モダリティ関係にも参加できる。
また、単調エンコーダの出力から粗い特徴のみを整列する以前の作業とは異なり、符号化フェーズ全体を通して粗大から細小の階層的特徴を整列するブロックワイドコントラスト学習を導入する。
さらに,前景の音響・視覚的特徴から各モードの背景特性を抑えるために,ロバストな差別的前景マイニング手法を導入する。
ベンチマークAVE, VGGSound, CREMA-Dデータセットの広範な実験により, SOTA法よりも大幅に性能が向上した。
関連論文リスト
- Computation and Parameter Efficient Multi-Modal Fusion Transformer for
Cued Speech Recognition [48.84506301960988]
Cued Speech (CS) は、聴覚障害者が使用する純粋視覚符号化法である。
自動CS認識(ACSR)は、音声の視覚的手がかりをテキストに書き起こそうとする。
論文 参考訳(メタデータ) (2024-01-31T05:20:29Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
視覚誘導音源分離は、視覚特徴抽出、マルチモーダル特徴融合、音響信号処理の3つの部分からなる。
本稿では,この課題をパラメータ調和とより効果的な方法で解決するために,AVPC(Audio-visual predictive coding)を提案する。
さらに、同一音源の2つの音声視覚表現を共予測することにより、AVPCのための効果的な自己教師型学習戦略を開発する。
論文 参考訳(メタデータ) (2023-06-19T03:10:57Z) - Cross-modal Audio-visual Co-learning for Text-independent Speaker
Verification [55.624946113550195]
本稿では,モーダルな発話協調学習パラダイムを提案する。
モーダル変換相関を学習するために、2つのクロスモーダルブースターを導入する。
LRSLip3, GridLip, LomGridLip, VoxLip を用いた実験の結果,提案手法は平均相対性能を60%, 20%向上させることがわかった。
論文 参考訳(メタデータ) (2023-02-22T10:06:37Z) - Zorro: the masked multimodal transformer [68.99684436029884]
ゾロ(Zorro)は、トランスフォーマー内の各モードからの入力をどのようにルーティングするかを制御するためにマスクを使用するテクニックである。
対照的な事前学習により、Zorroはマルチモーダルタスクの最も関連性の高いベンチマークで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2023-01-23T17:51:39Z) - LMR-CBT: Learning Modality-fused Representations with CB-Transformer for
Multimodal Emotion Recognition from Unaligned Multimodal Sequences [5.570499497432848]
マルチモーダル感情認識のためのCB-Transformer (LMR-CBT) を用いて, モダリティ融合表現を学習するための効率的なニューラルネットワークを提案する。
3つの挑戦的なデータセット上で、単語整列と非整列の実験を行います。
論文 参考訳(メタデータ) (2021-12-03T03:43:18Z) - Attentive Fusion Enhanced Audio-Visual Encoding for Transformer Based
Robust Speech Recognition [27.742673824969238]
提案手法は, クリーンで目立たない騒音条件下での認識率を平均0.55%, 4.51%, 4.61%向上させることができる。
LRS3-TEDデータセットの実験により、提案手法は平均0.55%、4.51%、4.61%の認識率を向上できることが示された。
論文 参考訳(メタデータ) (2020-08-06T14:39:07Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
本稿ではトランスフォーマーアーキテクチャを用いた音声視覚自動音声認識(AV-ASR)システムを提案する。
我々は、視覚情報によって提供されるシーンコンテキストに着目して、ASRを接地する。
私たちの結果は、最先端のListen、Attend、Spellベースのアーキテクチャに匹敵します。
論文 参考訳(メタデータ) (2020-04-29T09:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。