Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction
- URL: http://arxiv.org/abs/2406.04934v1
- Date: Fri, 7 Jun 2024 13:41:17 GMT
- Title: Optimal Recurrent Network Topologies for Dynamical Systems Reconstruction
- Authors: Christoph Jürgen Hemmer, Manuel Brenner, Florian Hess, Daniel Durstewitz,
- Abstract summary: We seek to infer from time series measurements a generative model of the underlying dynamical process.
A common strategy here is parameter pruning, removing all parameters with small weights.
We show that geometric pruning, where in contrast to magnitude-based pruning weights with a low contribution to an attractor's geometrical structure are removed, indeed manages to reduce parameter load substantially.
- Score: 5.498605900447094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In dynamical systems reconstruction (DSR) we seek to infer from time series measurements a generative model of the underlying dynamical process. This is a prime objective in any scientific discipline, where we are particularly interested in parsimonious models with a low parameter load. A common strategy here is parameter pruning, removing all parameters with small weights. However, here we find this strategy does not work for DSR, where even low magnitude parameters can contribute considerably to the system dynamics. On the other hand, it is well known that many natural systems which generate complex dynamics, like the brain or ecological networks, have a sparse topology with comparatively few links. Inspired by this, we show that geometric pruning, where in contrast to magnitude-based pruning weights with a low contribution to an attractor's geometrical structure are removed, indeed manages to reduce parameter load substantially without significantly hampering DSR quality. We further find that the networks resulting from geometric pruning have a specific type of topology, and that this topology, and not the magnitude of weights, is what is most crucial to performance. We provide an algorithm that automatically generates such topologies which can be used as priors for generative modeling of dynamical systems by RNNs, and compare it to other well studied topologies like small-world or scale-free networks.
Related papers
- A hybrid numerical methodology coupling Reduced Order Modeling and Graph Neural Networks for non-parametric geometries: applications to structural dynamics problems [0.0]
This work introduces a new approach for accelerating the numerical analysis of time-domain partial differential equations (PDEs) governing complex physical systems.
The methodology is based on a combination of a classical reduced-order modeling (ROM) framework and recently-parametric Graph Neural Networks (GNNs)
arXiv Detail & Related papers (2024-06-03T08:51:25Z) - The Underlying Correlated Dynamics in Neural Training [6.385006149689549]
Training of neural networks is a computationally intensive task.
We propose a model based on the correlation of the parameters' dynamics, which dramatically reduces the dimensionality.
This representation enhances the understanding of the underlying training dynamics and can pave the way for designing better acceleration techniques.
arXiv Detail & Related papers (2022-12-18T08:34:11Z) - Hyperparameter Tuning in Echo State Networks [0.0]
Echo State Networks are a type of recurrent neural network with a large randomly generated reservoir and a small number of readout connections trained via linear regression.
We propose an alternative approach of hyper parameter tuning based on the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
arXiv Detail & Related papers (2022-07-16T16:20:01Z) - Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems [7.045072177165241]
We augment a piecewise-linear recurrent neural network (RNN) by a linear spline basis expansion.
We show that this approach retains all the theoretically appealing properties of the simple PLRNN, yet boosts its capacity for approximating arbitrary nonlinear dynamical systems in comparatively low dimensions.
arXiv Detail & Related papers (2022-07-06T09:43:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
We generalize the idea of conditional parametrization -- using trainable functions of input parameters.
We show that conditionally parameterized networks provide superior performance compared to their traditional counterparts.
A network architecture named CP-GNet is also proposed as the first deep learning model capable of reacting standalone prediction of flows on meshes.
arXiv Detail & Related papers (2021-09-15T20:21:13Z) - Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation [56.73834525802723]
Lightweight Dynamic Graph Convolutional Networks (LDGCNs) are proposed.
LDGCNs capture richer non-local interactions by synthesizing higher order information from the input graphs.
We develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity.
arXiv Detail & Related papers (2020-10-09T06:03:46Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
We introduce a "fully tensorized" RNN architecture which jointly encodes the separate weight matrices within each recurrent cell.
This approach reduces model size by several orders of magnitude, while still maintaining similar or better performance compared to standard RNNs.
arXiv Detail & Related papers (2020-10-08T18:24:12Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.