Online Frequency Scheduling by Learning Parallel Actions
- URL: http://arxiv.org/abs/2406.05041v1
- Date: Fri, 7 Jun 2024 16:14:51 GMT
- Title: Online Frequency Scheduling by Learning Parallel Actions
- Authors: Anastasios Giovanidis, Mathieu Leconte, Sabrine Aroua, Tor Kvernvik, David Sandberg,
- Abstract summary: Frequency resources need to be assigned to a set of users while allowing for concurrent transmissions in the same sub-band.
Traditional methods are insufficient to cope with all the involved constraints and uncertainties.
We propose a scheduler based on action-branching over sub-bands, which is a deep Q-learning architecture with parallel decision capabilities.
- Score: 5.9838600557884805
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radio Resource Management is a challenging topic in future 6G networks where novel applications create strong competition among the users for the available resources. In this work we consider the frequency scheduling problem in a multi-user MIMO system. Frequency resources need to be assigned to a set of users while allowing for concurrent transmissions in the same sub-band. Traditional methods are insufficient to cope with all the involved constraints and uncertainties, whereas reinforcement learning can directly learn near-optimal solutions for such complex environments. However, the scheduling problem has an enormous action space accounting for all the combinations of users and sub-bands, so out-of-the-box algorithms cannot be used directly. In this work, we propose a scheduler based on action-branching over sub-bands, which is a deep Q-learning architecture with parallel decision capabilities. The sub-bands learn correlated but local decision policies and altogether they optimize a global reward. To improve the scaling of the architecture with the number of sub-bands, we propose variations (Unibranch, Graph Neural Network-based) that reduce the number of parameters to learn. The parallel decision making of the proposed architecture allows to meet short inference time requirements in real systems. Furthermore, the deep Q-learning approach permits online fine-tuning after deployment to bridge the sim-to-real gap. The proposed architectures are evaluated against relevant baselines from the literature showing competitive performance and possibilities of online adaptation to evolving environments.
Related papers
- FLARE: A New Federated Learning Framework with Adjustable Learning Rates over Resource-Constrained Wireless Networks [20.048146776405005]
Wireless federated learning (WFL) suffers from heterogeneity prevailing in the data distributions, computing powers, and channel conditions.
This paper presents a new idea with Federated Learning Adjusted leaning ratE (FLR ratE)
Experiments that FLARE consistently outperforms the baselines.
arXiv Detail & Related papers (2024-04-23T07:48:17Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning [11.007816552466952]
This paper focuses on the problem of scheduling inference queries on Deep Neural Networks in edge networks at short timescales.
By means of simulations, we analyze several policies in the realistic network settings and workloads of a large ISP.
We design ASET, a Reinforcement Learning based scheduling algorithm able to adapt its decisions according to the system conditions.
arXiv Detail & Related papers (2023-01-31T13:23:34Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - Learning Robust Scheduling with Search and Attention [6.217548079545464]
Allocating physical layer resources to users based on channel quality, buffer size, requirements and constraints represents one of the central optimization problems in the management of radio resources.
This problem is even more pronounced in MU-MIMO scheduling where the scheduler can assign multiple users to the same time-frequency physical resources.
In this work we treat the MU-MIMO scheduling problem as a tree-structured problem and, borrowing from the recent successes of AlphaGo Zero, we investigate the feasibility of searching for the best performing solutions.
arXiv Detail & Related papers (2021-11-15T20:46:26Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Tailored Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud
System [54.588242387136376]
We introduce KaiS, a learning-based scheduling framework for edge-cloud systems.
First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch.
Second, for diverse system scales and structures, we use graph neural networks to embed system state information.
Third, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration.
arXiv Detail & Related papers (2021-01-17T03:45:25Z) - Deep Reinforcement Learning for Resource Constrained Multiclass
Scheduling in Wireless Networks [0.0]
In our setup, the available limited bandwidth resources are allocated in order to serve randomly arriving service demands.
We propose a distributional Deep Deterministic Policy Gradient (DDPG) algorithm combined with Deep Sets to tackle the problem.
Our proposed algorithm is tested on both synthetic and real data, showing consistent gains against state-of-the-art conventional methods.
arXiv Detail & Related papers (2020-11-27T09:49:38Z) - Deep-Reinforcement-Learning-Based Scheduling with Contiguous Resource
Allocation for Next-Generation Cellular Systems [4.227387975627387]
We propose a novel scheduling algorithm with contiguous frequency-domain resource allocation (FDRA) based on deep reinforcement learning (DRL)
The proposed DRL-based scheduling algorithm outperforms other representative baseline schemes while having lower online computational complexity.
arXiv Detail & Related papers (2020-10-11T05:41:40Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.