DVOS: Self-Supervised Dense-Pattern Video Object Segmentation
- URL: http://arxiv.org/abs/2406.05131v1
- Date: Fri, 7 Jun 2024 17:58:36 GMT
- Title: DVOS: Self-Supervised Dense-Pattern Video Object Segmentation
- Authors: Keyhan Najafian, Farhad Maleki, Ian Stavness, Lingling Jin,
- Abstract summary: In Dense Video Object (DVOS) scenarios, each video frame encompasses hundreds of small, dense and partially occluded objects.
We propose a semi-self-temporal approach for DVOS utilizing a diffusion-based method through multi-task learning.
To demonstrate the utility and efficacy of the proposed approach, we developed DVOS models for wheat head segmentation of handheld and drone-captured videos.
- Score: 6.092973123903838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video object segmentation approaches primarily rely on large-scale pixel-accurate human-annotated datasets for model development. In Dense Video Object Segmentation (DVOS) scenarios, each video frame encompasses hundreds of small, dense, and partially occluded objects. Accordingly, the labor-intensive manual annotation of even a single frame often takes hours, which hinders the development of DVOS for many applications. Furthermore, in videos with dense patterns, following a large number of objects that move in different directions poses additional challenges. To address these challenges, we proposed a semi-self-supervised spatiotemporal approach for DVOS utilizing a diffusion-based method through multi-task learning. Emulating real videos' optical flow and simulating their motion, we developed a methodology to synthesize computationally annotated videos that can be used for training DVOS models; The model performance was further improved by utilizing weakly labeled (computationally generated but imprecise) data. To demonstrate the utility and efficacy of the proposed approach, we developed DVOS models for wheat head segmentation of handheld and drone-captured videos, capturing wheat crops in fields of different locations across various growth stages, spanning from heading to maturity. Despite using only a few manually annotated video frames, the proposed approach yielded high-performing models, achieving a Dice score of 0.82 when tested on a drone-captured external test set. While we showed the efficacy of the proposed approach for wheat head segmentation, its application can be extended to other crops or DVOS in other domains, such as crowd analysis or microscopic image analysis.
Related papers
- Towards Understanding Camera Motions in Any Video [80.223048294482]
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding.
CameraBench consists of 3,000 diverse internet videos annotated by experts through a rigorous quality control process.
One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers.
arXiv Detail & Related papers (2025-04-21T18:34:57Z) - Video Depth Anything: Consistent Depth Estimation for Super-Long Videos [60.857723250653976]
We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos.
Our model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2.
Our approach sets a new state-of-the-art in zero-shot video depth estimation.
arXiv Detail & Related papers (2025-01-21T18:53:30Z) - HAVANA: Hierarchical stochastic neighbor embedding for Accelerated Video ANnotAtions [59.71751978599567]
This paper presents a novel annotation pipeline that uses pre-extracted features and dimensionality reduction to accelerate the temporal video annotation process.
We demonstrate significant improvements in annotation effort compared to traditional linear methods, achieving more than a 10x reduction in clicks required for annotating over 12 hours of video.
arXiv Detail & Related papers (2024-09-16T18:15:38Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos.
Traditional image-based methods, relying on warping and blending, struggle with complex human movements and occlusions.
We reconceptualize video try-on as a process of generating videos conditioned on garment descriptions and human motion.
Our solution, WildVidFit, employs image-based controlled diffusion models for a streamlined, one-stage approach.
arXiv Detail & Related papers (2024-07-15T11:21:03Z) - Lester: rotoscope animation through video object segmentation and
tracking [0.0]
Lester is a novel method to automatically synthetise retro-style 2D animations from videos.
Video frames are processed with the Segment Anything Model (SAM) and the resulting masks are tracked through subsequent frames with DeAOT.
Results show that the method exhibits an excellent temporal consistency and can correctly process videos with different poses and appearances.
arXiv Detail & Related papers (2024-02-15T11:15:54Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
We introduce an appearance-based refinement method that leverages temporal consistency in video streams to correct inaccurate flow-based proposals.
Our approach involves a sequence-level selection mechanism that identifies accurate flow-predicted masks as exemplars.
Its performance is evaluated on multiple video segmentation benchmarks, including DAVIS, YouTube, SegTrackv2, and FBMS-59.
arXiv Detail & Related papers (2023-12-18T18:59:51Z) - Scene Summarization: Clustering Scene Videos into Spatially Diverse
Frames [24.614476456145255]
We propose summarization as a new video-based scene understanding task.
It aims to summarize a long video walkthrough of a scene into a small set of frames that are spatially diverse in the scene.
Our solution is a two-stage self-supervised pipeline named SceneSum.
arXiv Detail & Related papers (2023-11-28T22:18:26Z) - FODVid: Flow-guided Object Discovery in Videos [12.792602427704395]
We focus on building a generalizable solution that avoids overfitting to the individual intricacies.
To solve Video Object (VOS) in an unsupervised setting, we propose a new pipeline (FODVid) based on the idea of guiding segmentation outputs.
arXiv Detail & Related papers (2023-07-10T07:55:42Z) - Learn the Force We Can: Enabling Sparse Motion Control in Multi-Object
Video Generation [26.292052071093945]
We propose an unsupervised method to generate videos from a single frame and a sparse motion input.
Our trained model can generate unseen realistic object-to-object interactions.
We show that YODA is on par with or better than state of the art video generation prior work in terms of both controllability and video quality.
arXiv Detail & Related papers (2023-06-06T19:50:02Z) - Total-Recon: Deformable Scene Reconstruction for Embodied View Synthesis [76.72505510632904]
We present Total-Recon, the first method to reconstruct deformable scenes from long monocular RGBD videos.
Our method hierarchically decomposes the scene into the background and objects, whose motion is decomposed into root-body motion and local articulations.
arXiv Detail & Related papers (2023-04-24T17:59:52Z) - VIDM: Video Implicit Diffusion Models [75.90225524502759]
Diffusion models have emerged as a powerful generative method for synthesizing high-quality and diverse set of images.
We propose a video generation method based on diffusion models, where the effects of motion are modeled in an implicit condition.
We improve the quality of the generated videos by proposing multiple strategies such as sampling space truncation, robustness penalty, and positional group normalization.
arXiv Detail & Related papers (2022-12-01T02:58:46Z) - HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular
Video [44.58519508310171]
We introduce a free-viewpoint rendering method -- HumanNeRF -- that works on a given monocular video of a human performing complex body motions.
Our method enables pausing the video at any frame and rendering the subject from arbitrary new camera viewpoints.
arXiv Detail & Related papers (2022-01-11T18:51:21Z) - HODOR: High-level Object Descriptors for Object Re-segmentation in Video
Learned from Static Images [123.65233334380251]
We propose HODOR: a novel method that effectively leveraging annotated static images for understanding object appearance and scene context.
As a result, HODOR achieves state-of-the-art performance on the DAVIS and YouTube-VOS benchmarks.
Without any architectural modification, HODOR can also learn from video context around single annotated video frames.
arXiv Detail & Related papers (2021-12-16T18:59:53Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
DeepMultiCap is a novel method for multi-person performance capture using sparse multi-view cameras.
Our method can capture time varying surface details without the need of using pre-scanned template models.
arXiv Detail & Related papers (2021-05-01T14:32:13Z) - Sampling Based Scene-Space Video Processing [89.49726406622842]
We present a novel, sampling-based framework for processing video.
It enables high-quality scene-space video effects in the presence of inevitable errors in depth and camera pose estimation.
We present results for various casually captured, hand-held, moving, compressed, monocular videos.
arXiv Detail & Related papers (2021-02-05T05:55:04Z) - Space-time Neural Irradiance Fields for Free-Viewpoint Video [54.436478702701244]
We present a method that learns a neural irradiance field for dynamic scenes from a single video.
Our learned representation enables free-view rendering of the input video.
arXiv Detail & Related papers (2020-11-25T18:59:28Z) - Batteries, camera, action! Learning a semantic control space for
expressive robot cinematography [15.895161373307378]
We develop a data-driven framework that enables editing of complex camera positioning parameters in a semantic space.
First, we generate a database of video clips with a diverse range of shots in a photo-realistic simulator.
We use hundreds of participants in a crowd-sourcing framework to obtain scores for a set of semantic descriptors for each clip.
arXiv Detail & Related papers (2020-11-19T21:56:53Z) - Coherent Loss: A Generic Framework for Stable Video Segmentation [103.78087255807482]
We investigate how a jittering artifact degrades the visual quality of video segmentation results.
We propose a Coherent Loss with a generic framework to enhance the performance of a neural network against jittering artifacts.
arXiv Detail & Related papers (2020-10-25T10:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.