Towards Understanding Camera Motions in Any Video
- URL: http://arxiv.org/abs/2504.15376v1
- Date: Mon, 21 Apr 2025 18:34:57 GMT
- Title: Towards Understanding Camera Motions in Any Video
- Authors: Zhiqiu Lin, Siyuan Cen, Daniel Jiang, Jay Karhade, Hewei Wang, Chancharik Mitra, Tiffany Ling, Yuhan Huang, Sifan Liu, Mingyu Chen, Rushikesh Zawar, Xue Bai, Yilun Du, Chuang Gan, Deva Ramanan,
- Abstract summary: We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding.<n>CameraBench consists of 3,000 diverse internet videos annotated by experts through a rigorous quality control process.<n>One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers.
- Score: 80.223048294482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
Related papers
- CamMimic: Zero-Shot Image To Camera Motion Personalized Video Generation Using Diffusion Models [47.65379612084075]
CamMimic is designed to seamlessly transfer the camera motion observed in a given reference video onto any scene of the user's choice.<n>In the absence of an established metric for assessing camera motion transfer between unrelated scenes, we propose CameraScore.
arXiv Detail & Related papers (2025-04-13T08:04:11Z) - GenDoP: Auto-regressive Camera Trajectory Generation as a Director of Photography [98.28272367169465]
We introduce an auto-regressive model inspired by the expertise of Directors of Photography to generate artistic and expressive camera trajectories.<n>Thanks to the comprehensive and diverse database, we train an auto-regressive, decoder-only Transformer for high-quality, context-aware camera movement generation.<n>Experiments demonstrate that compared to existing methods, GenDoP offers better controllability, finer-grained trajectory adjustments, and higher motion stability.
arXiv Detail & Related papers (2025-04-09T17:56:01Z) - AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos [52.726585508669686]
We propose AnyCam, a fast transformer model that directly estimates camera poses and intrinsics from a dynamic video sequence.
We test AnyCam on established datasets, where it delivers accurate camera poses and intrinsics both qualitatively and quantitatively.
By combining camera information, uncertainty, and depth, our model can produce high-quality 4D pointclouds.
arXiv Detail & Related papers (2025-03-30T02:22:11Z) - ReCamMaster: Camera-Controlled Generative Rendering from A Single Video [72.42376733537925]
ReCamMaster is a camera-controlled generative video re-rendering framework.<n>It reproduces the dynamic scene of an input video at novel camera trajectories.<n>Our method also finds promising applications in video stabilization, super-resolution, and outpainting.
arXiv Detail & Related papers (2025-03-14T17:59:31Z) - MotionBench: Benchmarking and Improving Fine-grained Video Motion Understanding for Vision Language Models [30.139277087078764]
MotionBench is an evaluation benchmark designed to assess the fine-grained motion comprehension of video understanding models.<n>It includes data collected from diverse sources, ensuring a broad representation of real-world video content.<n>Our benchmark aims to guide and motivate the development of more capable video understanding models.
arXiv Detail & Related papers (2025-01-06T11:57:38Z) - ChatCam: Empowering Camera Control through Conversational AI [67.31920821192323]
ChatCam is a system that navigates camera movements through conversations with users.
To achieve this, we propose CineGPT, a GPT-based autoregressive model for text-conditioned camera trajectory generation.
We also develop an Anchor Determinator to ensure precise camera trajectory placement.
arXiv Detail & Related papers (2024-09-25T20:13:41Z) - Image Conductor: Precision Control for Interactive Video Synthesis [90.2353794019393]
Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements.
Image Conductor is a method for precise control of camera transitions and object movements to generate video assets from a single image.
arXiv Detail & Related papers (2024-06-21T17:55:05Z) - Batteries, camera, action! Learning a semantic control space for
expressive robot cinematography [15.895161373307378]
We develop a data-driven framework that enables editing of complex camera positioning parameters in a semantic space.
First, we generate a database of video clips with a diverse range of shots in a photo-realistic simulator.
We use hundreds of participants in a crowd-sourcing framework to obtain scores for a set of semantic descriptors for each clip.
arXiv Detail & Related papers (2020-11-19T21:56:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.