Elastic Full-Waveform Inversion : How the physics of problem improves data-driven techniques?
- URL: http://arxiv.org/abs/2406.05153v1
- Date: Tue, 4 Jun 2024 11:30:40 GMT
- Title: Elastic Full-Waveform Inversion : How the physics of problem improves data-driven techniques?
- Authors: Vahid Negahdari, Seyed Reza Moghadasi, Mohammad Reza Razvan,
- Abstract summary: Full-Waveform Inversion (FWI) is a nonlinear iterative seismic imaging technique.
FWI can produce detailed estimates of subsurface geophysical properties.
The strong nonlinearity of FWI can trap the optimization in local minima.
We propose methods for the solution of time-harmonic FWI to enhance accuracy compared to pure data-driven approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Full-Waveform Inversion (FWI) is a nonlinear iterative seismic imaging technique that, by reducing the misfit between recorded and predicted seismic waveforms, can produce detailed estimates of subsurface geophysical properties. Nevertheless, the strong nonlinearity of FWI can trap the optimization in local minima. This issue arises due to factors such as improper initial values, the absence of low frequencies in the measurements, noise, and other related considerations. To address this challenge and with the advent of advanced machine-learning techniques, data-driven methods, such as deep learning, have attracted significantly increasing attention in the geophysical community. Furthermore, the elastic wave equation should be included in FWI to represent elastic effects accurately. The intersection of data-driven techniques and elastic scattering theories presents opportunities and challenges. In this paper, by using the knowledge of elastic scattering (Physics of problem) and integrating it with deep learning techniques, we propose methods for the solution of time-harmonic FWI to enhance accuracy compared to pure data-driven approaches. Moreover, by modifying the structure of the Variational Autoencoder, we introduce a probabilistic deep learning method based on the physics of the problem that enables us to explore the uncertainties of the solution. According to the limited availability of datasets in this field and to assess the performance and accuracy of the proposed methods, we create a comprehensive dataset close to reality and conduct a comparative analysis of the presented approaches to it.
Related papers
- Discovery and inversion of the viscoelastic wave equation in inhomogeneous media [3.6864706261549127]
Current sparse regression methods may identify inaccurate equations on sparse and noisy datasets.
We propose a hybrid framework that combines two alternating direction optimization phases: discovery and embedding.
The proposed method exhibits excellent robustness and accuracy, even when faced with high levels of noise.
arXiv Detail & Related papers (2024-09-27T01:05:45Z) - Stochastic full waveform inversion with deep generative prior for uncertainty quantification [0.0]
Full Waveform Inversion (FWI) involves solving a nonlinear and often non-unique inverse problem.
FWI presents challenges such as local minima trapping and inadequate handling of inherent uncertainties.
We propose leveraging deep generative models as the prior distribution of geophysical parameters for Bayesian inversion.
arXiv Detail & Related papers (2024-06-07T11:44:50Z) - Learning from Uncertain Data: From Possible Worlds to Possible Models [13.789554282826835]
We introduce an efficient method for learning linear models from uncertain data, where uncertainty is represented as a set of possible variations in the data.
We compactly represent these dataset variations, enabling the symbolic execution of gradient descent on all possible worlds simultaneously.
Our method provides sound over-approximations of all possible optimal models and viable prediction ranges.
arXiv Detail & Related papers (2024-05-28T19:36:55Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
We propose PINNs for the calibration of models from full-field displacement and global force data in a realistic regime.
We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data.
arXiv Detail & Related papers (2022-12-15T11:01:32Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Physics-Consistent Data-driven Waveform Inversion with Adaptive Data
Augmentation [12.564534712461331]
We develop a new hybrid computational approach to solve full-waveform inversion (FWI)
We develop a data augmentation strategy that can improve the representativity of the training set.
We apply our method to synthetic elastic seismic waveform data generated from a subsurface geologic model built on a carbon sequestration site at Kimberlina, California.
arXiv Detail & Related papers (2020-09-03T17:12:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.