Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data
- URL: http://arxiv.org/abs/2212.07723v2
- Date: Tue, 13 Jun 2023 06:46:39 GMT
- Title: Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data
- Authors: David Anton, Henning Wessels
- Abstract summary: We propose PINNs for the calibration of models from full-field displacement and global force data in a realistic regime.
We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The identification of material parameters occurring in constitutive models
has a wide range of applications in practice. One of these applications is the
monitoring and assessment of the actual condition of infrastructure buildings,
as the material parameters directly reflect the resistance of the structures to
external impacts. Physics-informed neural networks (PINNs) have recently
emerged as a suitable method for solving inverse problems. The advantages of
this method are a straightforward inclusion of observation data. Unlike
grid-based methods, such as the least square finite element method (LS-FEM)
approach, no computational grid and no interpolation of the data is required.
In the current work, we propose PINNs for the calibration of constitutive
models from full-field displacement and global force data in a realistic regime
on the example of linear elasticity. We show that conditioning and
reformulation of the optimization problem play a crucial role in real-world
applications. Therefore, among others, we identify the material parameters from
initial estimates and balance the individual terms in the loss function. In
order to reduce the dependency of the identified material parameters on local
errors in the displacement approximation, we base the identification not on the
stress boundary conditions but instead on the global balance of internal and
external work. We demonstrate that the enhanced PINNs are capable of
identifying material parameters from both experimental one-dimensional data and
synthetic full-field displacement data in a realistic regime. Since
displacement data measured by, e.g., a digital image correlation (DIC) system
is noisy, we additionally investigate the robustness of the method to different
levels of noise.
Related papers
- Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
We develop a multi-network PINN for both the forward problem and for direct inversion of nonlinear fault friction parameters.
We present the computational PINN framework for strike-slip faults in 1D and 2D subject to rate-and-state friction.
We find that the network for the parameter inversion at the fault performs much better than the network for material displacements to which it is coupled.
arXiv Detail & Related papers (2023-12-14T23:53:25Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform.
Two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored.
arXiv Detail & Related papers (2023-01-06T05:01:05Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.