DiffusionPID: Interpreting Diffusion via Partial Information Decomposition
- URL: http://arxiv.org/abs/2406.05191v4
- Date: Thu, 14 Nov 2024 21:26:33 GMT
- Title: DiffusionPID: Interpreting Diffusion via Partial Information Decomposition
- Authors: Rushikesh Zawar, Shaurya Dewan, Prakanshul Saxena, Yingshan Chang, Andrew Luo, Yonatan Bisk,
- Abstract summary: We apply information-theoretic principles to decompose the input text prompt into its elementary components.
We analyze how individual tokens and their interactions shape the generated image.
We show that PID is a potent tool for evaluating and diagnosing text-to-image diffusion models.
- Score: 24.83767778658948
- License:
- Abstract: Text-to-image diffusion models have made significant progress in generating naturalistic images from textual inputs, and demonstrate the capacity to learn and represent complex visual-semantic relationships. While these diffusion models have achieved remarkable success, the underlying mechanisms driving their performance are not yet fully accounted for, with many unanswered questions surrounding what they learn, how they represent visual-semantic relationships, and why they sometimes fail to generalize. Our work presents Diffusion Partial Information Decomposition (DiffusionPID), a novel technique that applies information-theoretic principles to decompose the input text prompt into its elementary components, enabling a detailed examination of how individual tokens and their interactions shape the generated image. We introduce a formal approach to analyze the uniqueness, redundancy, and synergy terms by applying PID to the denoising model at both the image and pixel level. This approach enables us to characterize how individual tokens and their interactions affect the model output. We first present a fine-grained analysis of characteristics utilized by the model to uniquely localize specific concepts, we then apply our approach in bias analysis and show it can recover gender and ethnicity biases. Finally, we use our method to visually characterize word ambiguity and similarity from the model's perspective and illustrate the efficacy of our method for prompt intervention. Our results show that PID is a potent tool for evaluating and diagnosing text-to-image diffusion models.
Related papers
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - How Diffusion Models Learn to Factorize and Compose [14.161975556325796]
Diffusion models are capable of generating photo-realistic images that combine elements which likely do not appear together in the training set.
We investigate whether and when diffusion models learn semantically meaningful and factorized representations of composable features.
arXiv Detail & Related papers (2024-08-23T17:59:03Z) - Diffexplainer: Towards Cross-modal Global Explanations with Diffusion Models [51.21351775178525]
DiffExplainer is a novel framework that, leveraging language-vision models, enables multimodal global explainability.
It employs diffusion models conditioned on optimized text prompts, synthesizing images that maximize class outputs.
The analysis of generated visual descriptions allows for automatic identification of biases and spurious features.
arXiv Detail & Related papers (2024-04-03T10:11:22Z) - Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
Disentangled representation learning strives to extract the intrinsic factors within observed data.
We introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias.
This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs.
arXiv Detail & Related papers (2024-02-15T05:07:54Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt.
While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt.
We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt.
We introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness
arXiv Detail & Related papers (2023-01-31T18:10:38Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - DE-FAKE: Detection and Attribution of Fake Images Generated by
Text-to-Image Diffusion Models [12.310393737912412]
We pioneer a systematic study of the authenticity of fake images generated by text-to-image diffusion models.
For visual modality, we propose universal detection that demonstrates fake images of these text-to-image diffusion models share common cues.
For linguistic modality, we analyze the impacts of text captions on the image authenticity of text-to-image diffusion models.
arXiv Detail & Related papers (2022-10-13T13:08:54Z) - Compositional Visual Generation with Composable Diffusion Models [80.75258849913574]
We propose an alternative structured approach for compositional generation using diffusion models.
An image is generated by composing a set of diffusion models, with each of them modeling a certain component of the image.
The proposed method can generate scenes at test time that are substantially more complex than those seen in training.
arXiv Detail & Related papers (2022-06-03T17:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.