論文の概要: Generative Explore-Exploit: Training-free Optimization of Generative Recommender Systems using LLM Optimizers
- arxiv url: http://arxiv.org/abs/2406.05255v1
- Date: Fri, 7 Jun 2024 20:41:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 22:36:11.520153
- Title: Generative Explore-Exploit: Training-free Optimization of Generative Recommender Systems using LLM Optimizers
- Title(参考訳): ジェネレーティブ・エクスプロイト:LLM最適化を用いたジェネレーティブ・レコメンダシステムの訓練不要最適化
- Authors: Lütfi Kerem Senel, Besnik Fetahu, Davis Yoshida, Zhiyu Chen, Giuseppe Castellucci, Nikhita Vedula, Jason Choi, Shervin Malmasi,
- Abstract要約: 生成レコメンデーションを最適化するためのトレーニング不要なアプローチを提案する。
本研究では,高いエンゲージメントを持つ生成アイテムを活用できるだけでなく,隠された集団の嗜好を積極的に探索し,発見できるジェネレーティブな探索・探索手法を提案する。
- 参考スコア(独自算出の注目度): 29.739736497044664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender systems are widely used to suggest engaging content, and Large Language Models (LLMs) have given rise to generative recommenders. Such systems can directly generate items, including for open-set tasks like question suggestion. While the world knowledge of LLMs enable good recommendations, improving the generated content through user feedback is challenging as continuously fine-tuning LLMs is prohibitively expensive. We present a training-free approach for optimizing generative recommenders by connecting user feedback loops to LLM-based optimizers. We propose a generative explore-exploit method that can not only exploit generated items with known high engagement, but also actively explore and discover hidden population preferences to improve recommendation quality. We evaluate our approach on question generation in two domains (e-commerce and general knowledge), and model user feedback with Click Through Rate (CTR). Experiments show our LLM-based explore-exploit approach can iteratively improve recommendations, and consistently increase CTR. Ablation analysis shows that generative exploration is key to learning user preferences, avoiding the pitfalls of greedy exploit-only approaches. A human evaluation strongly supports our quantitative findings.
- Abstract(参考訳): リコメンダシステムは、エンゲージメントなコンテンツを提案するために広く使われており、Large Language Models (LLMs) は、ジェネレーティブなレコメンダを生み出している。
このようなシステムは、質問提案のようなオープンなタスクを含む、直接的にアイテムを生成することができる。
LLMの世界の知識は良いレコメンデーションを可能にするが、ユーザからのフィードバックによって生成されたコンテンツを改善することは困難であり、継続的な微調整 LLM は違法に高価である。
ユーザフィードバックループをLLMベースのオプティマイザに接続することで,生成レコメンデーションを最適化するためのトレーニング不要なアプローチを提案する。
本研究では, 高いエンゲージメントを有する生成アイテムを活用できるだけでなく, 隠された集団選好を積極的に探索・発見し, 推薦品質の向上を図る。
我々は,2つの領域(eコマースと一般知識)における質問生成に対するアプローチを評価し,クリックスルーレート(CTR)を用いたユーザフィードバックをモデル化する。
LLMに基づく探索探索アプローチは、リコメンデーションを反復的に改善し、CTRを継続的に増加させます。
アブレーション分析は、生成的探索がユーザの好みを学習する鍵であり、欲求的なエクスプロイトのみのアプローチの落とし穴を避けていることを示している。
人間の評価は我々の量的発見を強く支持する。
関連論文リスト
- LANE: Logic Alignment of Non-tuning Large Language Models and Online Recommendation Systems for Explainable Reason Generation [15.972926854420619]
大きな言語モデル(LLM)を活用することで、包括的なレコメンデーションロジック生成の新しい機会を提供する。
レコメンデーションタスクのための微調整LDMモデルは、計算コストと既存のシステムとのアライメントの問題を引き起こす。
本研究は,LLMとオンラインレコメンデーションシステムとの連携を,LLMのチューニングを伴わない効果的戦略LANEを提案する。
論文 参考訳(メタデータ) (2024-07-03T06:20:31Z) - LLM-Powered Explanations: Unraveling Recommendations Through Subgraph Reasoning [40.53821858897774]
本稿では,Large Language Models (LLMs) とKGs (KGs) を相乗する新しいレコメンデータを紹介し,そのレコメンデーションを強化し,解釈可能な結果を提供する。
提案手法は,レコメンデータシステムの有効性と解釈性を両立させる。
論文 参考訳(メタデータ) (2024-06-22T14:14:03Z) - Aligning Large Language Models for Controllable Recommendations [31.255594408462322]
従来のレコメンデータモデルから派生したラベルを付加した教師付き学習タスクのコレクションを導入する。
そこで我々は,LLMの能力を高めるための強化学習に基づくアライメント手法を開発した。
提案手法は,高い精度性能を維持しつつ,レコメンダシステム内の命令に準拠するLLMの能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-03-08T05:23:27Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
説明ジェネレータを最近登場した大規模言語モデル(LLM)に置き換える影響は、まだ不明である。
本研究では,シンプルで効果的な2段階説明可能なレコメンデーションフレームワークであるLLMXRecを提案する。
いくつかの重要な微調整技術を採用することで、制御可能で流動的な説明が十分に生成できる。
論文 参考訳(メタデータ) (2023-12-25T09:09:54Z) - Empowering Few-Shot Recommender Systems with Large Language Models --
Enhanced Representations [0.0]
大規模言語モデル(LLM)は、明示的なフィードバックベースのレコメンデータシステムで遭遇する少数のシナリオに対処するための、新たな洞察を提供する。
我々の研究は、LLMがレコメンデーターシステムに関わっていることの多面的側面を深く掘り下げるために、研究者に刺激を与えることができる。
論文 参考訳(メタデータ) (2023-12-21T03:50:09Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - GenRec: Large Language Model for Generative Recommendation [41.22833600362077]
本稿では,テキストデータに基づく大規模言語モデル(LLM)を用いたレコメンデーションシステムに対する革新的なアプローチを提案する。
GenRecはLLMの理解機能を使ってコンテキストを解釈し、ユーザの好みを学習し、関連するレコメンデーションを生成する。
本研究は,レコメンデーションシステムの領域に革命をもたらす上で,LLMに基づくジェネレーティブレコメンデーションの可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-07-02T02:37:07Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
我々は、大規模言語モデル(LLM)による指示としてレコメンデーションを考える。
まず、ユーザの好み、意図、タスクフォーム、コンテキストを自然言語で記述するための一般的な命令形式を設計する。
そして、39の命令テンプレートを手動で設計し、大量のユーザ個人化された命令データを自動的に生成する。
論文 参考訳(メタデータ) (2023-05-11T17:39:07Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。