VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging
- URL: http://arxiv.org/abs/2406.05285v3
- Date: Fri, 22 Nov 2024 02:15:00 GMT
- Title: VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging
- Authors: Yufan He, Pengfei Guo, Yucheng Tang, Andriy Myronenko, Vishwesh Nath, Ziyue Xu, Dong Yang, Can Zhao, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, Daguang Xu, Wenqi Li,
- Abstract summary: We present VISTA3D, Versatile Imaging SegmenTation and voxel model.
It is built on top of the well-established 3D segmentation pipeline.
It is the first model to achieve state-of-the-art performance in both 3D automatic (supporting 127 classes) and 3D interactive segmentation.
- Score: 18.111368889931885
- License:
- Abstract: Foundation models for interactive segmentation in 2D natural images and videos have sparked significant interest in building 3D foundation models for medical imaging. However, the domain gaps and clinical use cases for 3D medical imaging require a dedicated model that diverges from existing 2D solutions. Specifically, such foundation models should support a full workflow that can actually reduce human effort. Treating 3D medical images as sequences of 2D slices and reusing interactive 2D foundation models seems straightforward, but 2D annotation is too time-consuming for 3D tasks. Moreover, for large cohort analysis, it's the highly accurate automatic segmentation models that reduce the most human effort. However, these models lack support for interactive corrections and lack zero-shot ability for novel structures, which is a key feature of "foundation". While reusing pre-trained 2D backbones in 3D enhances zero-shot potential, their performance on complex 3D structures still lags behind leading 3D models. To address these issues, we present VISTA3D, Versatile Imaging SegmenTation and Annotation model, that targets to solve all these challenges and requirements with one unified foundation model. VISTA3D is built on top of the well-established 3D segmentation pipeline, and it is the first model to achieve state-of-the-art performance in both 3D automatic (supporting 127 classes) and 3D interactive segmentation, even when compared with top 3D expert models on large and diverse benchmarks. Additionally, VISTA3D's 3D interactive design allows efficient human correction, and a novel 3D supervoxel method that distills 2D pretrained backbones grants VISTA3D top 3D zero-shot performance. We believe the model, recipe, and insights represent a promising step towards a clinically useful 3D foundation model. Code and weights are publicly available at https://github.com/Project-MONAI/VISTA.
Related papers
- ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDense is a framework for 3D pre-training utilizing existing 2D networks and large-scale multi-view datasets.
We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline.
arXiv Detail & Related papers (2024-08-30T05:57:01Z) - Improving 2D Feature Representations by 3D-Aware Fine-Tuning [17.01280751430423]
Current visual foundation models are trained purely on unstructured 2D data.
We show that fine-tuning on 3D-aware data improves the quality of emerging semantic features.
arXiv Detail & Related papers (2024-07-29T17:59:21Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Probing the 3D Awareness of Visual Foundation Models [56.68380136809413]
We analyze the 3D awareness of visual foundation models.
We conduct experiments using task-specific probes and zero-shot inference procedures on frozen features.
arXiv Detail & Related papers (2024-04-12T17:58:04Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
We present Uni3D, a 3D foundation model to explore the unified 3D representation at scale.
Uni3D uses a 2D ViT end-to-end pretrained to align the 3D point cloud features with the image-text aligned features.
We show that the strong Uni3D representation also enables applications such as 3D painting and retrieval in the wild.
arXiv Detail & Related papers (2023-10-10T16:49:21Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - A Convolutional Architecture for 3D Model Embedding [1.3858051019755282]
We propose a deep learning architecture to handle 3D models as an input.
We show that the embedding representation conveys semantic information that helps to deal with the similarity assessment of 3D objects.
arXiv Detail & Related papers (2021-03-05T15:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.