論文の概要: Group-wise oracle-efficient algorithms for online multi-group learning
- arxiv url: http://arxiv.org/abs/2406.05287v1
- Date: Fri, 7 Jun 2024 23:00:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 20:34:04.669727
- Title: Group-wise oracle-efficient algorithms for online multi-group learning
- Title(参考訳): オンライン多群学習のためのグループワイドオラクル効率アルゴリズム
- Authors: Samuel Deng, Daniel Hsu, Jingwen Liu,
- Abstract要約: 本研究では,オンライン学習者が,集団の系列に対応するサブシーケンスの集合に対して,小さな予測後悔を同時に達成しなければならない学習モデルである,オンライン多群学習の課題について検討する。
本稿では, 逆数および逆数変換の設定を含む, 種々の条件下で, サブ線形後悔を伴うオラクル効率のアルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 12.664869982542895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of online multi-group learning, a learning model in which an online learner must simultaneously achieve small prediction regret on a large collection of (possibly overlapping) subsequences corresponding to a family of groups. Groups are subsets of the context space, and in fairness applications, they may correspond to subpopulations defined by expressive functions of demographic attributes. In contrast to previous work on this learning model, we consider scenarios in which the family of groups is too large to explicitly enumerate, and hence we seek algorithms that only access groups via an optimization oracle. In this paper, we design such oracle-efficient algorithms with sublinear regret under a variety of settings, including: (i) the i.i.d. setting, (ii) the adversarial setting with smoothed context distributions, and (iii) the adversarial transductive setting.
- Abstract(参考訳): オンライン多群学習の課題は、オンライン学習者が、集団の族に対応する(おそらく重複する)サブシーケンスの大規模なコレクションに対して、小さな予測後悔を同時に達成しなければならない学習モデルである。
群は文脈空間のサブセットであり、公平な応用においては、人口統計属性の表現関数によって定義されるサブ集団に対応することができる。
この学習モデルに関するこれまでの研究とは対照的に、群族が明示的に列挙するには大きすぎるシナリオを考える。
本稿では, 種々の条件下で, サブ線形後悔を伴うオラクル効率のアルゴリズムを設計する。
i) i.i.d. 設定、
(二)スムーズな文脈分布をもつ敵の設定、及び
三 反対転化の設定
関連論文リスト
- Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
対象値が入力集合とサブセットの両方に条件付けされている場合、スーパーセットのテクスティ不変な統計量を関心のサブセットに組み込むことが不可欠であることを示す。
これにより、出力値がサブセットとその対応するスーパーセットの置換に不変であることを保証する。
論文 参考訳(メタデータ) (2024-02-05T16:09:35Z) - Multi-group Learning for Hierarchical Groups [12.473780585666768]
我々は、多群学習の研究を、群が階層的に構造化される自然の場合にまで拡張する。
そこで我々は,ほぼ最適なサンプル量を持つ解釈可能かつ決定論的決定木予測器を出力するアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-01T01:06:32Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - Learning by Grouping: A Multilevel Optimization Framework for Improving
Fairness in Classification without Losing Accuracy [19.84719054826755]
場合によっては、特定の社会集団に対する偏見や差別を示すことによって、AIシステムは不公平である場合もある。
そこで我々は,MLモデルを学習し,様々な問題集合を個別のサブグループに分類し,各サブグループを解く新しい機械学習フレームワークを提案する。
提案するフレームワークは,3段階の最適化問題として定式化された3段階の学習を含む。
論文 参考訳(メタデータ) (2023-04-02T08:45:08Z) - Group conditional validity via multi-group learning [5.797821810358083]
本研究では,分布自由な共形予測の問題と群条件妥当性の基準について考察する。
既存の方法は、制限的群化構造または分布的仮定の下でそのような保証を達成する。
マルチグループ学習と呼ばれる問題に対して,アルゴリズムを活用することにより,個人集団に対する妥当性保証を実現する問題に対する簡易な削減を提案する。
論文 参考訳(メタデータ) (2023-03-07T15:51:03Z) - Fair and skill-diverse student group formation via constrained k-way
graph partitioning [65.29889537564455]
本研究は、公正かつ多様な学生グループ形成のための教師なしアルゴリズムを導入する。
学生のスキルセットは、ラプラシア固有写像を用いて、コースマークデータの教師なし次元削減を用いて決定される。
この問題は制約付きグラフ分割問題として定式化され、各グループのスキルセットの多様性が最大化される。
論文 参考訳(メタデータ) (2023-01-12T14:02:49Z) - Outlier-Robust Group Inference via Gradient Space Clustering [50.87474101594732]
既存のメソッドは、最悪のグループのパフォーマンスを改善することができるが、それらは、しばしば高価で入手できないグループアノテーションを必要とする。
モデルパラメータの勾配の空間にデータをクラスタリングすることで,アウトレーヤの存在下でグループアノテーションを学習する問題に対処する。
そこで我々は,DBSCANのような標準クラスタリング手法に適合するように,マイノリティグループや外れ値に関する情報を保存しながら,勾配空間内のデータがより単純な構造を持つことを示す。
論文 参考訳(メタデータ) (2022-10-13T06:04:43Z) - Addressing Missing Sources with Adversarial Support-Matching [8.53946780558779]
そこで本研究では,データ内の2段階階層の2段階に,データの欠如が関係しているシナリオについて検討する。
アルゴリズム的公正性から保護された群の概念に触発され、この第2階層によって彫られた分割を「部分群」と呼ぶ。
私たちは、サブグループに不変な表現を学ぶために、"deployment set"と呼ばれる追加で多様だがラベルなしのデータセットを使用します。
論文 参考訳(メタデータ) (2022-03-24T16:19:19Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - Simple and near-optimal algorithms for hidden stratification and multi-group learning [13.337579367787253]
本稿では,多群学習問題に対する解の構造について考察する。
学習問題に対して単純でほぼ最適のアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-12-22T19:16:24Z) - Focus on the Common Good: Group Distributional Robustness Follows [47.62596240492509]
本稿では,多様なグループ間で共有される特徴の学習を明示的に促進する,新しい,シンプルなアルゴリズムを提案する。
グループDROは、最低の正規化損失を持つグループに焦点を当て、代わりに、他のグループでもより良いパフォーマンスを実現するグループに焦点を当てるが、共有/共通機能を学ぶことにつながる可能性がある。
論文 参考訳(メタデータ) (2021-10-06T09:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。