Extremization to Fine Tune Physics Informed Neural Networks for Solving Boundary Value Problems
- URL: http://arxiv.org/abs/2406.05290v1
- Date: Fri, 7 Jun 2024 23:25:13 GMT
- Title: Extremization to Fine Tune Physics Informed Neural Networks for Solving Boundary Value Problems
- Authors: Abhiram Anand Thiruthummal, Sergiy Shelyag, Eun-jin Kim,
- Abstract summary: Theory of Functional Connections (TFC) is used to exactly impose initial and boundary conditions (IBCs) of (I)BVPs on PINNs.
We propose a modification to the TFC framework named Reduced TFC and show a significant improvement in the training and inference time of PINNs.
- Score: 0.1874930567916036
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a novel method for fast and accurate training of physics-informed neural networks (PINNs) to find solutions to boundary value problems (BVPs) and initial boundary value problems (IBVPs). By combining the methods of training deep neural networks (DNNs) and Extreme Learning Machines (ELMs), we develop a model which has the expressivity of DNNs with the fine-tuning ability of ELMs. We showcase the superiority of our proposed method by solving several BVPs and IBVPs which include linear and non-linear ordinary differential equations (ODEs), partial differential equations (PDEs) and coupled PDEs. The examples we consider include a stiff coupled ODE system where traditional numerical methods fail, a 3+1D non-linear PDE, Kovasznay flow and Taylor-Green vortex solutions to incompressible Navier-Stokes equations and pure advection solution of 1+1 D compressible Euler equation. The Theory of Functional Connections (TFC) is used to exactly impose initial and boundary conditions (IBCs) of (I)BVPs on PINNs. We propose a modification to the TFC framework named Reduced TFC and show a significant improvement in the training and inference time of PINNs compared to IBCs imposed using TFC. Furthermore, Reduced TFC is shown to be able to generalize to more complex boundary geometries which is not possible with TFC. We also introduce a method of applying boundary conditions at infinity for BVPs and numerically solve the pure advection in 1+1 D Euler equations using these boundary conditions.
Related papers
- Coupled Integral PINN for conservation law [1.9720482348156743]
The Physics-Informed Neural Network (PINN) is an innovative approach to solve a diverse array of partial differential equations.
This paper introduces a novel Coupled Integrated PINN methodology that involves fitting the integral solutions equations using additional neural networks.
arXiv Detail & Related papers (2024-11-18T04:32:42Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - A Hybrid Kernel-Free Boundary Integral Method with Operator Learning for Solving Parametric Partial Differential Equations In Complex Domains [0.0]
Kernel-Free Boundary Integral (KFBI) method presents an iterative solution to boundary integral equations arising from elliptic partial differential equations (PDEs)
We propose a hybrid KFBI method, integrating the foundational principles of the KFBI method with the capabilities of deep learning.
arXiv Detail & Related papers (2024-04-23T17:25:35Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models [0.20999222360659606]
This paper introduces a transferable framework for solving boundary value problems (BVPs) via deep neural networks.
First, we introduce emphgenomic flow network (GFNet), a neural network that can infer the solution of a BVP across arbitrary boundary conditions.
Then, we propose emphmosaic flow (MF) predictor, a novel iterative algorithm that assembles or stitches the GFNet's inferences.
arXiv Detail & Related papers (2021-04-22T05:20:27Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Extreme Theory of Functional Connections: A Physics-Informed Neural
Network Method for Solving Parametric Differential Equations [0.0]
We present a physics-informed method for solving problems involving parametric differential equations (DEs) called X-TFC.
X-TFC differs from PINN and Deep-TFC; whereas PINN and Deep-TFC use a deep-NN, X-TFC uses a single-layer NN, or more precisely, an Extreme Learning Machine, ELM.
arXiv Detail & Related papers (2020-05-15T22:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.