Coupled Integral PINN for conservation law
- URL: http://arxiv.org/abs/2411.11276v1
- Date: Mon, 18 Nov 2024 04:32:42 GMT
- Title: Coupled Integral PINN for conservation law
- Authors: Yeping Wang, Shihao Yang,
- Abstract summary: The Physics-Informed Neural Network (PINN) is an innovative approach to solve a diverse array of partial differential equations.
This paper introduces a novel Coupled Integrated PINN methodology that involves fitting the integral solutions equations using additional neural networks.
- Score: 1.9720482348156743
- License:
- Abstract: The Physics-Informed Neural Network (PINN) is an innovative approach to solve a diverse array of partial differential equations (PDEs) leveraging the power of neural networks. This is achieved by minimizing the residual loss associated with the explicit physical information, usually coupled with data derived from initial and boundary conditions. However, a challenge arises in the context of nonlinear conservation laws where derivatives are undefined at shocks, leading to solutions that deviate from the true physical phenomena. To solve this issue, the physical solution must be extracted from the weak formulation of the PDE and is typically further bounded by entropy conditions. Within the numerical framework, finite volume methods (FVM) are employed to address conservation laws. These methods resolve the integral form of conservation laws and delineate the shock characteristics. Inspired by the principles underlying FVM, this paper introduces a novel Coupled Integrated PINN methodology that involves fitting the integral solutions of equations using additional neural networks. This technique not only augments the conventional PINN's capability in modeling shock waves, but also eliminates the need for spatial and temporal discretization. As such, it bypasses the complexities of numerical integration and reconstruction associated with non-convex fluxes. Finally, we show that the proposed new Integrated PINN performs well in conservative law and outperforms the vanilla PINN when tackle the challenging shock problems using examples of Burger's equation, Buckley-Leverett Equation and Euler System.
Related papers
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNs are used to study vortex solutions in 2+1 dimensional nonlinear partial differential equations.
We consider PINNs with conservation laws (referred to as cPINNs), deformations of the initial profiles, and a friction approach to improve the identification's resolution.
arXiv Detail & Related papers (2024-10-23T08:29:13Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
Physics-informed neural networks (PINNs) have recently received much attention due to their capabilities in solving both forward and inverse problems.
We propose a new PINN architecture, called Reduced-PINN, that utilizes a reduced-order integration method to enable the PINN to solve stiff chemical kinetics.
arXiv Detail & Related papers (2022-08-23T09:20:42Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
We develop a physics-informed neural network (PINN) model for parabolic problems with a sharply perturbed initial condition.
Localized large gradients in the ADE solution make the (common in PINN) Latin hypercube sampling of the equation's residual highly inefficient.
We propose criteria for weights in the loss function that produce a more accurate PINN solution than those obtained with the weights selected via other methods.
arXiv Detail & Related papers (2022-08-18T05:00:24Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Physics informed deep learning for computational elastodynamics without
labeled data [13.084113582897965]
We present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to labeled data.
Results show the promise of PINN in the context of computational mechanics applications.
arXiv Detail & Related papers (2020-06-10T19:05:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.