MemeGuard: An LLM and VLM-based Framework for Advancing Content Moderation via Meme Intervention
- URL: http://arxiv.org/abs/2406.05344v1
- Date: Sat, 8 Jun 2024 04:09:20 GMT
- Title: MemeGuard: An LLM and VLM-based Framework for Advancing Content Moderation via Meme Intervention
- Authors: Prince Jha, Raghav Jain, Konika Mandal, Aman Chadha, Sriparna Saha, Pushpak Bhattacharyya,
- Abstract summary: We present textitMemeGuard, a comprehensive framework leveraging Large Language Models (LLMs) and Visual Language Models (VLMs) for meme intervention.
textitMemeGuard harnesses a specially fine-tuned VLM, textitVLMeme, for meme interpretation, and a multimodal knowledge selection and ranking mechanism.
We leverage textitICMM to test textitMemeGuard, demonstrating its proficiency in generating relevant and effective responses to toxic memes.
- Score: 43.849634264271565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content like memes. Addressing this gap, we present \textit{MemeGuard}, a comprehensive framework leveraging Large Language Models (LLMs) and Visual Language Models (VLMs) for meme intervention. \textit{MemeGuard} harnesses a specially fine-tuned VLM, \textit{VLMeme}, for meme interpretation, and a multimodal knowledge selection and ranking mechanism (\textit{MKS}) for distilling relevant knowledge. This knowledge is then employed by a general-purpose LLM to generate contextually appropriate interventions. Another key contribution of this work is the \textit{\textbf{I}ntervening} \textit{\textbf{C}yberbullying in \textbf{M}ultimodal \textbf{M}emes (ICMM)} dataset, a high-quality, labeled dataset featuring toxic memes and their corresponding human-annotated interventions. We leverage \textit{ICMM} to test \textit{MemeGuard}, demonstrating its proficiency in generating relevant and effective responses to toxic memes.
Related papers
- Demystifying Hateful Content: Leveraging Large Multimodal Models for Hateful Meme Detection with Explainable Decisions [4.649093665157263]
In this paper, we introduce IntMeme, a novel framework that leverages Large Multimodal Models (LMMs) for hateful meme classification with explainable decisions.
IntMeme addresses the dual challenges of improving both accuracy and explainability in meme moderation.
Our approach addresses the opacity and misclassification issues associated with PT-VLMs, optimizing the use of LMMs for hateful meme detection.
arXiv Detail & Related papers (2025-02-16T10:45:40Z) - Knowing Where to Focus: Attention-Guided Alignment for Text-based Person Search [64.15205542003056]
We introduce Attention-Guided Alignment (AGA) framework featuring two innovative components: Attention-Guided Mask (AGM) Modeling and Text Enrichment Module (TEM)
AGA achieves new state-of-the-art results with Rank-1 accuracy reaching 78.36%, 67.31%, and 67.4% on CUHK-PEDES, ICFG-PEDES, and RSTP, respectively.
arXiv Detail & Related papers (2024-12-19T17:51:49Z) - TrojVLM: Backdoor Attack Against Vision Language Models [50.87239635292717]
This study introduces TrojVLM, the first exploration of backdoor attacks aimed at Vision Language Models (VLMs)
TrojVLM inserts predetermined target text into output text when encountering poisoned images.
A novel semantic preserving loss is proposed to ensure the semantic integrity of the original image content.
arXiv Detail & Related papers (2024-09-28T04:37:09Z) - HateSieve: A Contrastive Learning Framework for Detecting and Segmenting Hateful Content in Multimodal Memes [8.97062933976566]
textscHateSieve is a framework designed to enhance the detection and segmentation of hateful elements in memes.
textscHateSieve features a novel Contrastive Meme Generator that creates semantically paired memes.
Empirical experiments on the Hateful Meme show that textscHateSieve not only surpasses existing LMMs in performance with fewer trainable parameters but also offers a robust mechanism for precisely identifying and isolating hateful content.
arXiv Detail & Related papers (2024-08-11T14:56:06Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - MemeMQA: Multimodal Question Answering for Memes via Rationale-Based Inferencing [53.30190591805432]
We introduce MemeMQA, a multimodal question-answering framework to solicit accurate responses to structured questions.
We also propose ARSENAL, a novel two-stage multimodal framework to address MemeMQA.
arXiv Detail & Related papers (2024-05-18T07:44:41Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - MEMEX: Detecting Explanatory Evidence for Memes via Knowledge-Enriched
Contextualization [31.209594252045566]
We propose a novel task, MEMEX, given a meme and a related document, the aim is to mine the context that succinctly explains the background of the meme.
To benchmark MCC, we propose MIME, a multimodal neural framework that uses common sense enriched meme representation and a layered approach to capture the cross-modal semantic dependencies between the meme and the context.
arXiv Detail & Related papers (2023-05-25T10:19:35Z) - What do you MEME? Generating Explanations for Visual Semantic Role
Labelling in Memes [42.357272117919464]
We introduce a novel task - EXCLAIM, generating explanations for visual semantic role labeling in memes.
To this end, we curate ExHVV, a novel dataset that offers natural language explanations of connotative roles for three types of entities.
We also posit LUMEN, a novel multimodal, multi-task learning framework that endeavors to address EXCLAIM optimally.
arXiv Detail & Related papers (2022-12-01T18:21:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.