Demystifying Hateful Content: Leveraging Large Multimodal Models for Hateful Meme Detection with Explainable Decisions
- URL: http://arxiv.org/abs/2502.11073v1
- Date: Sun, 16 Feb 2025 10:45:40 GMT
- Title: Demystifying Hateful Content: Leveraging Large Multimodal Models for Hateful Meme Detection with Explainable Decisions
- Authors: Ming Shan Hee, Roy Ka-Wei Lee,
- Abstract summary: In this paper, we introduce IntMeme, a novel framework that leverages Large Multimodal Models (LMMs) for hateful meme classification with explainable decisions.
IntMeme addresses the dual challenges of improving both accuracy and explainability in meme moderation.
Our approach addresses the opacity and misclassification issues associated with PT-VLMs, optimizing the use of LMMs for hateful meme detection.
- Score: 4.649093665157263
- License:
- Abstract: Hateful meme detection presents a significant challenge as a multimodal task due to the complexity of interpreting implicit hate messages and contextual cues within memes. Previous approaches have fine-tuned pre-trained vision-language models (PT-VLMs), leveraging the knowledge they gained during pre-training and their attention mechanisms to understand meme content. However, the reliance of these models on implicit knowledge and complex attention mechanisms renders their decisions difficult to explain, which is crucial for building trust in meme classification. In this paper, we introduce IntMeme, a novel framework that leverages Large Multimodal Models (LMMs) for hateful meme classification with explainable decisions. IntMeme addresses the dual challenges of improving both accuracy and explainability in meme moderation. The framework uses LMMs to generate human-like, interpretive analyses of memes, providing deeper insights into multimodal content and context. Additionally, it uses independent encoding modules for both memes and their interpretations, which are then combined to enhance classification performance. Our approach addresses the opacity and misclassification issues associated with PT-VLMs, optimizing the use of LMMs for hateful meme detection. We demonstrate the effectiveness of IntMeme through comprehensive experiments across three datasets, showcasing its superiority over state-of-the-art models.
Related papers
- Towards Low-Resource Harmful Meme Detection with LMM Agents [13.688955830843973]
We propose an agency-driven framework for low-resource harmful meme detection.
We first retrieve relative memes with annotations to leverage label information as auxiliary signals for the LMM agent.
We elicit knowledge-revising behavior within the LMM agent to derive well-generalized insights into meme harmfulness.
arXiv Detail & Related papers (2024-11-08T07:43:15Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - HateSieve: A Contrastive Learning Framework for Detecting and Segmenting Hateful Content in Multimodal Memes [8.97062933976566]
textscHateSieve is a framework designed to enhance the detection and segmentation of hateful elements in memes.
textscHateSieve features a novel Contrastive Meme Generator that creates semantically paired memes.
Empirical experiments on the Hateful Meme show that textscHateSieve not only surpasses existing LMMs in performance with fewer trainable parameters but also offers a robust mechanism for precisely identifying and isolating hateful content.
arXiv Detail & Related papers (2024-08-11T14:56:06Z) - Evolver: Chain-of-Evolution Prompting to Boost Large Multimodal Models for Hateful Meme Detection [49.122777764853055]
We explore the potential of Large Multimodal Models (LMMs) for hateful meme detection.
We propose Evolver, which incorporates LMMs via Chain-of-Evolution (CoE) Prompting.
Evolver simulates the evolving and expressing process of memes and reasons through LMMs in a step-by-step manner.
arXiv Detail & Related papers (2024-07-30T17:51:44Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.
Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.
We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - MemeMQA: Multimodal Question Answering for Memes via Rationale-Based Inferencing [53.30190591805432]
We introduce MemeMQA, a multimodal question-answering framework to solicit accurate responses to structured questions.
We also propose ARSENAL, a novel two-stage multimodal framework to address MemeMQA.
arXiv Detail & Related papers (2024-05-18T07:44:41Z) - Towards Explainable Harmful Meme Detection through Multimodal Debate
between Large Language Models [18.181154544563416]
The age of social media is flooded with Internet memes, necessitating a clear grasp and effective identification of harmful ones.
Existing harmful meme detection methods do not present readable explanations that unveil such implicit meaning to support their detection decisions.
We propose an explainable approach to detect harmful memes, achieved through reasoning over conflicting rationales from both harmless and harmful positions.
arXiv Detail & Related papers (2024-01-24T08:37:16Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
We introduce em MultiBully-Ex, the first benchmark dataset for multimodal explanation from code-mixed cyberbullying memes.
A Contrastive Language-Image Pretraining (CLIP) approach has been proposed for visual and textual explanation of a meme.
arXiv Detail & Related papers (2024-01-18T11:24:30Z) - Beneath the Surface: Unveiling Harmful Memes with Multimodal Reasoning
Distilled from Large Language Models [17.617187709968242]
Existing harmful meme detection approaches only recognize superficial harm-indicative signals in an end-to-end classification manner.
We propose a novel generative framework to learn reasonable thoughts from Large Language Models for better multimodal fusion.
Our proposed approach achieves superior performance than state-of-the-art methods on the harmful meme detection task.
arXiv Detail & Related papers (2023-12-09T01:59:11Z) - MemeFier: Dual-stage Modality Fusion for Image Meme Classification [8.794414326545697]
New forms of digital content such as image memes have given rise to spread of hate using multimodal means.
We propose MemeFier, a deep learning-based architecture for fine-grained classification of Internet image memes.
arXiv Detail & Related papers (2023-04-06T07:36:52Z) - Caption Enriched Samples for Improving Hateful Memes Detection [78.5136090997431]
The hateful meme challenge demonstrates the difficulty of determining whether a meme is hateful or not.
Both unimodal language models and multimodal vision-language models cannot reach the human level of performance.
arXiv Detail & Related papers (2021-09-22T10:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.