論文の概要: Regret Bounds for Episodic Risk-Sensitive Linear Quadratic Regulator
- arxiv url: http://arxiv.org/abs/2406.05366v1
- Date: Sat, 8 Jun 2024 06:06:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 20:04:51.643972
- Title: Regret Bounds for Episodic Risk-Sensitive Linear Quadratic Regulator
- Title(参考訳): エピソードリスク感応性線形二次レギュレータのためのレグレト境界
- Authors: Wenhao Xu, Xuefeng Gao, Xuedong He,
- Abstract要約: リスクに敏感な線形二次規制は、リスクに敏感な最適制御における最も基本的な問題の1つである。
簡単な最小二乗グリーディアルゴリズムを提案し、そのアルゴリズムが$widetildemathcalO(log N)$ regretを達成することを示す。
これは、エピソード的リスクに敏感な線形二次的レギュレータに対する最初の後悔の束である。
- 参考スコア(独自算出の注目度): 5.445357652101423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Risk-sensitive linear quadratic regulator is one of the most fundamental problems in risk-sensitive optimal control. In this paper, we study online adaptive control of risk-sensitive linear quadratic regulator in the finite horizon episodic setting. We propose a simple least-squares greedy algorithm and show that it achieves $\widetilde{\mathcal{O}}(\log N)$ regret under a specific identifiability assumption, where $N$ is the total number of episodes. If the identifiability assumption is not satisfied, we propose incorporating exploration noise into the least-squares-based algorithm, resulting in an algorithm with $\widetilde{\mathcal{O}}(\sqrt{N})$ regret. To our best knowledge, this is the first set of regret bounds for episodic risk-sensitive linear quadratic regulator. Our proof relies on perturbation analysis of less-standard Riccati equations for risk-sensitive linear quadratic control, and a delicate analysis of the loss in the risk-sensitive performance criterion due to applying the suboptimal controller in the online learning process.
- Abstract(参考訳): リスクに敏感な線形二次規制は、リスクに敏感な最適制御における最も基本的な問題の1つである。
本稿では,有限地平線エピソード設定におけるリスク感応性線形二次規制器のオンライン適応制御について検討する。
簡単な最小二乗グリーディアルゴリズムを提案し、特定の識別可能性仮定の下で、$\widetilde{\mathcal{O}}(\log N)$ regretを達成し、$N$はエピソードの総数であることを示す。
同一性仮定が満たされない場合、最小二乗アルゴリズムに探索ノイズを組み込むことを提案し、その結果、$\widetilde{\mathcal{O}}(\sqrt{N})$ regret というアルゴリズムが成立する。
我々の知る限りでは、これはエピソジックなリスクに敏感な線形二次的レギュレータに対する最初の後悔の束である。
本証明は,リスク感受性線形二次制御のための低標準リカティ方程式の摂動解析と,オンライン学習プロセスにおける準最適制御の適用によるリスク感受性性能基準の損失の微妙な解析に依拠する。
関連論文リスト
- Risk-Aware Linear Bandits: Theory and Applications in Smart Order
Routing [10.69955834942979]
スマート・オーダー・ルーティング(SOR)におけるリスク・アウェア・バンディットの最適化について検討する。
分散最小化グローバル最適化(G-Optimal)設計により、新しいインスタンス非依存型リスク意識探索-then-Commit(RISE)アルゴリズムとインスタンス依存型リスク意識継承排除(RISE++)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-04T00:21:10Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
最適化問題と学習問題の両方について検討する。
我々は、潜在的に線形な数の制約違反を犠牲にして、サブ線形後悔を保証するアルゴリズム、すなわちGCBを提供する。
より興味深いことに、我々はGCB_safe(psi,phi)というアルゴリズムを提供し、サブ線形擬似回帰と安全性w.h.p.の両方を、耐性 psi と phi を受け入れるコストで保証する。
論文 参考訳(メタデータ) (2022-01-18T17:24:20Z) - Dynamic Regret Minimization for Control of Non-stationary Linear
Dynamical Systems [18.783925692307054]
本稿では,$tildemathcalO(sqrtST)$を最適にリセットするアルゴリズムを提案する。
本アルゴリズムの要点は適応的非定常性検出戦略であり,最近開発されたコンテキスト多重武装バンドイット問題に対するアプローチに基づいている。
論文 参考訳(メタデータ) (2021-11-06T01:30:51Z) - Safe Adaptive Learning-based Control for Constrained Linear Quadratic
Regulators with Regret Guarantees [11.627320138064684]
本研究では,2次コスト関数を持つ未知の線形系の状態・動作の安全性制約を考慮した適応制御について検討する。
本アルゴリズムは単一軌道上に実装されており,システム再起動を必要としない。
論文 参考訳(メタデータ) (2021-10-31T05:52:42Z) - Derivative-Free Policy Optimization for Risk-Sensitive and Robust
Control Design: Implicit Regularization and Sample Complexity [15.940861063732608]
直接政策検索は、現代の強化学習(RL)の作業馬の1つとして役立ちます。
線形リスク感知型ロバストコントローラにおける政策ロバスト性(PG)手法の収束理論について検討する。
私たちのアルゴリズムの特徴の1つは、学習フェーズ中に特定のレベルの複雑さ/リスク感受性コントローラが保持されるということです。
論文 参考訳(メタデータ) (2021-01-04T16:00:46Z) - Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff
in Regret [115.85354306623368]
本研究では,未知の遷移カーネルを持つマルコフ決定過程におけるリスク感応性強化学習について検討する。
確率的に効率的なモデルレスアルゴリズムとして、リスク感性価値反復(RSVI)とリスク感性Q-ラーニング(RSQ)を提案する。
RSVIが $tildeObig(lambda(|beta| H2) cdot sqrtH3 S2AT big) に達したことを証明しています。
論文 参考訳(メタデータ) (2020-06-22T19:28:26Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Logarithmic Regret for Adversarial Online Control [56.12283443161479]
対数的後悔を伴う最初のアルゴリズムを任意対数外乱列に対して与える。
我々のアルゴリズムと分析はオフライン制御法の特徴を利用してオンライン制御問題を(遅延)オンライン学習に還元する。
論文 参考訳(メタデータ) (2020-02-29T06:29:19Z) - Regret Minimization in Partially Observable Linear Quadratic Control [91.43582419264763]
モデル力学が未知の先行性を持つ場合、部分的に観測可能な線形二次制御系における後悔の問題を考察する。
本稿では, 部分的に観測可能な線形二次制御のために, 後悔を分解し, 終端から終端までの後悔の上限を与える新しい方法を提案する。
論文 参考訳(メタデータ) (2020-01-31T22:35:08Z) - Improper Learning for Non-Stochastic Control [78.65807250350755]
逆方向の摂動, 逆方向に選択された凸損失関数, 部分的に観察された状態を含む, 未知の線形力学系を制御することの問題点を考察する。
このパラメトリゼーションにオンライン降下を適用することで、大規模なクローズドループポリシーに対してサブリニア後悔を実現する新しいコントローラが得られる。
我々の境界は、線形力学コントローラの安定化と競合する非確率的制御設定における最初のものである。
論文 参考訳(メタデータ) (2020-01-25T02:12:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。