論文の概要: Metamorphic Relation Generation: State of the Art and Visions for Future Research
- arxiv url: http://arxiv.org/abs/2406.05397v1
- Date: Sat, 8 Jun 2024 08:26:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 19:55:06.900763
- Title: Metamorphic Relation Generation: State of the Art and Visions for Future Research
- Title(参考訳): メタモルフィック関係生成の現状と今後の展望
- Authors: Rui Li, Huai Liu, Pak-Lok Poon, Dave Towey, Chang-Ai Sun, Zheng Zheng, Zhi Quan Zhou, Tsong Yueh Chen,
- Abstract要約: 本稿では, メタモルフィック・リレーション・ジェネレーションのための技術の現状について, 体系的なレビューを行う。
我々は、メタモルフィック関係の同定と構築のための理論と技法をさらに進めるためのビジョンを強調した。
- 参考スコア(独自算出の注目度): 11.581022313046061
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Metamorphic testing has become one mainstream technique to address the notorious oracle problem in software testing, thanks to its great successes in revealing real-life bugs in a wide variety of software systems. Metamorphic relations, the core component of metamorphic testing, have continuously attracted research interests from both academia and industry. In the last decade, a rapidly increasing number of studies have been conducted to systematically generate metamorphic relations from various sources and for different application domains. In this article, based on the systematic review on the state of the art for metamorphic relations' generation, we summarize and highlight visions for further advancing the theory and techniques for identifying and constructing metamorphic relations, and discuss potential research trends in related areas.
- Abstract(参考訳): メタモルフィックテストは、ソフトウェアテストにおける悪名高いオラクルの問題に対処する主要なテクニックとなっている。
メタモルフィックテストのコアコンポーネントであるメタモルフィック関係は、学術と産業の両方から継続的に研究の関心を集めている。
過去10年間で、様々なソースや異なるアプリケーションドメインから、体系的にメタモルフィック関係を生成する研究が急速に増えている。
本稿では, メタモルフィック関係の生成技術に関する体系的なレビューに基づいて, メタモルフィック関係の同定・構築のための理論・技術をさらに発展させるためのビジョンを要約し, 強調し, 関連分野における潜在的研究動向について考察する。
関連論文リスト
- Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - A Survey of Decomposition-Based Evolutionary Multi-Objective Optimization: Part II -- A Data Science Perspective [4.322038460697958]
5,400以上の論文,10,000人の著者,400の会場,1600のMOEA/D研究機関をカプセル化したナレッジグラフを構築します。
また、MOEA/Dの協調と引用ネットワークを探求し、文学の成長に隠れたパターンを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T14:38:58Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
この調査は、コードインテリジェンスの発展に関する体系的なレビューを示す。
50以上の代表モデルとその変種、20以上のタスクのカテゴリ、および680以上の関連する広範な研究をカバーしている。
発達軌道の考察に基づいて、コードインテリジェンスとより広範なマシンインテリジェンスとの間の新たな相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-21T08:54:56Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
既存の知識強化手法を2つの主要なカテゴリと4つのサブカテゴリに分類する新しい分類法を導入する。
我々は、現在のアプリケーションドメインを解明し、将来的な研究の展望について洞察を提供する。
論文 参考訳(メタデータ) (2023-02-04T04:54:30Z) - The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations [0.0]
機械学習(ML)モデルは、医学、バイオインフォマティクス、その他の科学など、様々な分野の複雑な応用で使われている。
しかし、ブラックボックスの性質のため、それらが提供する結果を理解し、信頼することは難しいこともある。
これにより、MLモデルの信頼性向上に関連する信頼性の高い視覚化ツールの需要が増加した。
本稿では,インタラクティブな可視化によるMLモデルの信頼性向上について,STAR(State-of-the-Art Report)を提案する。
論文 参考訳(メタデータ) (2022-12-22T14:29:43Z) - Bridging Machine Learning and Sciences: Opportunities and Challenges [0.0]
機械学習の科学への応用は、近年、エキサイティングな進歩を遂げている。
近年,ディープ・ニューラルネットを用いたアウト・オブ・ディストリビューション検出は高次元データにおいて大きな進歩を遂げている。
我々は、データ普遍性、実験プロトコル、モデル堅牢性など、それらの適用可能性について批判的に考察する。
論文 参考訳(メタデータ) (2022-10-24T17:54:46Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - Self-Supervised Anomaly Detection in Computer Vision and Beyond: A
Survey and Outlook [9.85256783464329]
異常検出は、サイバーセキュリティ、金融、医療など、さまざまな領域において重要な役割を担っている。
近年,深層学習モデルの顕著な成長により,この分野において大きな進歩を遂げている。
自己教師型学習の出現は、既存の最先端のアプローチよりも優れた新しいADアルゴリズムの開発を引き起こした。
論文 参考訳(メタデータ) (2022-05-10T21:16:14Z) - A State-of-the-art Survey of U-Net in Microscopic Image Analysis: from
Simple Usage to Structure Mortification [18.66392155060376]
画像解析技術は、疾患、排水処理、環境変化モニタリング分析および畳み込みニューラルネットワーク(CNN)における従来の人工的手法の不都合を解決するために用いられる。
本稿では,U-Netの発展史を包括的にレビューし,U-Netの出現以来の様々なセグメンテーション手法の研究成果を分析する。
論文 参考訳(メタデータ) (2022-02-14T02:52:53Z) - Fine-Grained Image Analysis with Deep Learning: A Survey [146.22351342315233]
きめ細かい画像解析(FGIA)は、コンピュータビジョンとパターン認識における長年の根本的な問題である。
本稿では、FGIAの分野を再定義し、FGIAの2つの基礎研究領域、細粒度画像認識と細粒度画像検索を統合することで、FGIAの分野を広げようとしている。
論文 参考訳(メタデータ) (2021-11-11T09:43:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。