論文の概要: Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL
- arxiv url: http://arxiv.org/abs/2406.05427v3
- Date: Wed, 22 Jan 2025 15:21:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:11.152953
- Title: Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL
- Title(参考訳): Decision Mamba: オフラインRLのための自己進化正規化を備えた多点状態空間モデル
- Authors: Qi Lv, Xiang Deng, Gongwei Chen, Michael Yu Wang, Liqiang Nie,
- Abstract要約: 本稿では,自己進化型政策学習戦略を持つ新しい多粒状態空間モデル(SSM)であるDecision Mambaを提案する。
これらの課題に対処するため、我々は自己進化型政策学習戦略を持つ新しい多粒状態空間モデル(SSM)であるDecision Mambaを提案する。
雑音性軌道上における過度に適合する問題を緩和するために,進行正則化を用いて自己進化政策を提案する。
- 参考スコア(独自算出の注目度): 57.202733701029594
- License:
- Abstract: While the conditional sequence modeling with the transformer architecture has demonstrated its effectiveness in dealing with offline reinforcement learning (RL) tasks, it is struggle to handle out-of-distribution states and actions. Existing work attempts to address this issue by data augmentation with the learned policy or adding extra constraints with the value-based RL algorithm. However, these studies still fail to overcome the following challenges: (1) insufficiently utilizing the historical temporal information among inter-steps, (2) overlooking the local intrastep relationships among return-to-gos (RTGs), states, and actions, (3) overfitting suboptimal trajectories with noisy labels. To address these challenges, we propose Decision Mamba (DM), a novel multi-grained state space model (SSM) with a self-evolving policy learning strategy. DM explicitly models the historical hidden state to extract the temporal information by using the mamba architecture. To capture the relationship among RTG-state-action triplets, a fine-grained SSM module is designed and integrated into the original coarse-grained SSM in mamba, resulting in a novel mamba architecture tailored for offline RL. Finally, to mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization. The policy evolves by using its own past knowledge to refine the suboptimal actions, thus enhancing its robustness on noisy demonstrations. Extensive experiments on various tasks show that DM outperforms other baselines substantially.
- Abstract(参考訳): 変圧器アーキテクチャを用いた条件付きシーケンスモデリングは、オフライン強化学習(RL)タスクに対処する上での有効性を示したが、分配外状態や動作を扱うのに苦労している。
既存の作業は、学習ポリシによるデータ拡張や、バリューベースのRLアルゴリズムによる追加制約の追加によって、この問題に対処しようとするものだ。
しかし,これらの研究は,(1)ステップ間の時間的情報の不十分な活用,(2)リターン・ツー・ゴー(RTG)と状態,行動間の局所的なステップ内関係の見落とし,(3)ノイズのあるラベルによる最適下方軌道の過度な適合,といった課題を克服することはできなかった。
これらの課題に対処するため、我々は自己進化型政策学習戦略を持つ新しい多粒状態空間モデル(SSM)であるDecision Mamba (DM)を提案する。
DMは、マンバアーキテクチャを用いて時間情報を抽出するために、歴史的に隠された状態を明示的にモデル化する。
RTG状態反応三重項間の関係を捉えるため、細粒度SSMモジュールをマムバの粗粒SSMに設計・統合し、新しいマンバアーキテクチャをオフラインRL用に調整した。
最後に,ノイズトラジェクトリにおける過度に適合する問題を緩和するために,進行正規化を用いて自己進化政策を提案する。
この政策は、自身の過去の知識を用いて、準最適動作を洗練させ、ノイズの多い実演における堅牢性を高めることで進化する。
様々なタスクに対する大規模な実験により、DMは他のベースラインよりも大幅に優れていた。
関連論文リスト
- Mamba as Decision Maker: Exploring Multi-scale Sequence Modeling in Offline Reinforcement Learning [16.23977055134524]
我々はMamba Decision Maker (MambaDM) という新しいアクション予測手法を提案する。
MambaDMは、マルチスケール依存関係の効率的なモデリングのため、シーケンスモデリングのパラダイムの有望な代替品として期待されている。
本稿では,RL領域におけるMambaDMのシーケンスモデリング機能について述べる。
論文 参考訳(メタデータ) (2024-06-04T06:49:18Z) - Theoretical Foundations of Deep Selective State-Space Models [13.971499161967083]
ディープSSMは、さまざまなドメインセットで優れたパフォーマンスを示す。
最近の研究で、線形リカレンス電力が入力と隠れ状態の間の乗法的相互作用を可能にすることが示されている。
ランダム線形再帰が単純な入力制御遷移を備える場合、隠れ状態は強力な数学的対象の低次元射影であることを示す。
論文 参考訳(メタデータ) (2024-02-29T11:20:16Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Diffusion Policies for Out-of-Distribution Generalization in Offline
Reinforcement Learning [1.9336815376402723]
オフラインのRLメソッドは、過去の経験を活用して、データ収集に使用される行動ポリシーよりも優れたポリシーを学ぶ。
しかし、オフラインのRLアルゴリズムは、トレーニング中にオンラインインタラクションが欠如しているため、分散シフトの処理やポリシーの効果的表現において課題に直面している。
本稿では,近年の拡散政策における状態再構成特徴学習を取り入れたSRDP(State Reconstruction for Diffusion Policies)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T17:34:23Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
オフライン強化学習は、追加の環境相互作用なしに、事前に記録された、固定されたデータセット上でポリシーをトレーニングすることを目的としている。
我々は、最近、潜在行動空間における学習ポリシーを基礎として、生成モデルの構築に正規化フローの特別な形式を用いる。
提案手法が最近提案したアルゴリズムより優れていることを示すため,様々な移動タスクとナビゲーションタスクについて評価を行った。
論文 参考訳(メタデータ) (2022-11-20T21:57:10Z) - Mutual Information Regularized Offline Reinforcement Learning [76.05299071490913]
我々は、データセットにおける状態と行動間の相互情報の観点から、オフラインRLにアプローチする新しいMISAフレームワークを提案する。
この下位境界の最適化は、オフラインデータセット上での一段階改善されたポリシーの可能性の最大化と等価であることを示す。
MISAの3つの異なる変種を導入し、より厳密な相互情報によりオフラインのRL性能が向上することを示した。
論文 参考訳(メタデータ) (2022-10-14T03:22:43Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
オフライン強化学習(英語: offline reinforcement learning, RL)とは、以前に収集された大量のデータから完全に学習ポリシーを学習する問題を指す。
既存のモデルベースRLアルゴリズムは,すでにオフライン設定において大きな利益を上げていることを示す。
本稿では,既存のモデルに基づくRL法を,力学の不確実性によって人為的に罰せられる報酬で適用することを提案する。
論文 参考訳(メタデータ) (2020-05-27T08:46:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。