A Roadmap for Software Testing in Open Collaborative Development Environments
- URL: http://arxiv.org/abs/2406.05438v1
- Date: Sat, 8 Jun 2024 10:50:24 GMT
- Title: A Roadmap for Software Testing in Open Collaborative Development Environments
- Authors: Qing Wang, Junjie Wang, Mingyang Li, Yawen Wang, Zhe Liu,
- Abstract summary: The distributed nature of open collaborative development, along with its diverse contributors and rapid iterations, presents new challenges for ensuring software quality.
This paper offers a comprehensive review and analysis of recent advancements in software quality assurance within open collaborative development environments.
- Score: 14.113209837391183
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Amidst the ever-expanding digital sphere, the evolution of the Internet has not only fostered an atmosphere of information transparency and sharing but has also sparked a revolution in software development practices. The distributed nature of open collaborative development, along with its diverse contributors and rapid iterations, presents new challenges for ensuring software quality. This paper offers a comprehensive review and analysis of recent advancements in software quality assurance within open collaborative development environments. Our examination covers various aspects, including process management, personnel dynamics, and technological advancements, providing valuable insights into effective approaches for maintaining software quality in such collaborative settings. Furthermore, we delve into the challenges and opportunities arising from emerging technologies such as LLMs and the AI model-centric development paradigm. By addressing these topics, our study contributes to a deeper understanding of software quality assurance in open collaborative environments and lays the groundwork for future exploration and innovation.
Related papers
- Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPT series learns from and simulating real-world code submission activities.
Lingma SWE-GPT 72B resolves 30.20% of GitHub issues, marking a significant improvement in automatic issue resolution.
arXiv Detail & Related papers (2024-11-01T14:27:16Z) - Remote Communication Trends Among Developers and Testers in Post-Pandemic Work Environments [0.0]
The rapid adoption of remote and hybrid work models in response to the COVID-19 pandemic has brought significant changes to communication and coordination within software development teams.
This study explores the characteristics and challenges of remote communication between software developers and software testers.
arXiv Detail & Related papers (2024-08-22T20:36:29Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
This research proposal aims to explore innovative solutions by focusing on the deployment of agents powered by Large Language Models (LLMs)
The iterative nature of agents, which allows for continuous learning and adaptation, can help surpass common challenges in code generation.
We aim to use the iterative feedback in these systems to further fine-tune the LLMs underlying the agents, becoming better aligned to the task of automated software improvement.
arXiv Detail & Related papers (2024-06-24T15:45:22Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
The study of in-IDE Human-AI Experience is critical in understanding how these AI tools are transforming the software development process.
We conducted a literature review to study the current state of in-IDE Human-AI Experience research.
arXiv Detail & Related papers (2024-01-19T14:55:51Z) - Code Ownership in Open-Source AI Software Security [18.779538756226298]
We use code ownership metrics to investigate the correlation with latent vulnerabilities across five prominent open-source AI software projects.
The findings suggest a positive relationship between high-level ownership (characterised by a limited number of minor contributors) and a decrease in vulnerabilities.
With these novel code ownership metrics, we have implemented a Python-based command-line application to aid project curators and quality assurance professionals in evaluating and benchmarking their on-site projects.
arXiv Detail & Related papers (2023-12-18T00:37:29Z) - The Software Genome Project: Venture to the Genomic Pathways of Open
Source Software and Its Applications [8.55939767653389]
textbfSoftware Genome Project is geared towards the secure monitoring and exploitation of open-source software.
Software Genome Project builds a complete set of software genome maps to help developers and managers gain a deeper understanding of software complexity and diversity.
arXiv Detail & Related papers (2023-11-16T13:18:24Z) - Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
Digital twins have the potential for cost-effective software development and maintenance strategies.
We interviewed SMEs about their current development processes.
First results show that real-time requirements prevent, to date, a Software-in-the-Loop development approach.
arXiv Detail & Related papers (2023-09-17T08:56:36Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.