論文の概要: Ctrl-V: Higher Fidelity Video Generation with Bounding-Box Controlled Object Motion
- arxiv url: http://arxiv.org/abs/2406.05630v3
- Date: Sun, 08 Dec 2024 22:16:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:12.889174
- Title: Ctrl-V: Higher Fidelity Video Generation with Bounding-Box Controlled Object Motion
- Title(参考訳): Ctrl-V:バウンディングボックス制御オブジェクトモーションによる高忠実度映像生成
- Authors: Ge Ya Luo, Zhi Hao Luo, Anthony Gosselin, Alexia Jolicoeur-Martineau, Christopher Pal,
- Abstract要約: 本稿では,現実的な映像合成において,物体の動きを正確に制御する方法を提案する。
これを実現するために,バウンディングボックスを用いてオブジェクトの動きを制御し,この制御を画素空間内の2Dまたは3Dボックスのレンダリングに拡張する。
我々の手法であるCtrl-Vは、修正および微調整された安定ビデオ拡散(SVD)モデルを利用して、軌跡生成と映像生成の両方を解決する。
- 参考スコア(独自算出の注目度): 8.068194154084967
- License:
- Abstract: Controllable video generation has attracted significant attention, largely due to advances in video diffusion models. In domains such as autonomous driving, it is essential to develop highly accurate predictions for object motions. This paper tackles a crucial challenge of how to exert precise control over object motion for realistic video synthesis. To accomplish this, we 1) control object movements using bounding boxes and extend this control to the renderings of 2D or 3D boxes in pixel space, 2) employ a distinct, specialized model to forecast the trajectories of object bounding boxes based on their previous and, if desired, future positions, and 3) adapt and enhance a separate video diffusion network to create video content based on these high quality trajectory forecasts. Our method, Ctrl-V, leverages modified and fine-tuned Stable Video Diffusion (SVD) models to solve both trajectory and video generation. Extensive experiments conducted on the KITTI, Virtual-KITTI 2, BDD100k, and nuScenes datasets validate the effectiveness of our approach in producing realistic and controllable video generation.
- Abstract(参考訳): 制御可能なビデオ生成は、主にビデオ拡散モデルの進歩により、大きな注目を集めている。
自律運転のような領域では、物体の動きの高精度な予測を開発することが不可欠である。
本稿では,現実的な映像合成において,物体の動きを正確に制御するための重要な課題に取り組む。
これを達成するために、私たちは
1)バウンディングボックスを用いて物体の動きを制御し、この制御を画素空間内の2Dまたは3Dボックスのレンダリングに拡張する。
2) 対象物の境界箱の軌跡を,前回及び所望の将来の位置に基づいて予測するために,別個の特化モデルを用いる。
3)これらの高品質な軌跡予測に基づいて映像コンテンツを作成するために,個別の映像拡散ネットワークを適応・拡張する。
我々の手法であるCtrl-Vは、修正および微調整された安定ビデオ拡散(SVD)モデルを利用して、軌跡生成と映像生成の両方を解決する。
KITTI, Virtual-KITTI 2, BDD100k, nuScenesデータセットを用いた大規模な実験により, 現実的で制御可能な映像生成におけるアプローチの有効性が検証された。
関連論文リスト
- CineMaster: A 3D-Aware and Controllable Framework for Cinematic Text-to-Video Generation [76.72787726497343]
CineMasterは3D認識と制御可能なテキスト・ビデオ生成のためのフレームワークである。
私たちのゴールは、プロの映画監督と同等のコントロール性を持つユーザーを力づけることです。
論文 参考訳(メタデータ) (2025-02-12T18:55:36Z) - VidCRAFT3: Camera, Object, and Lighting Control for Image-to-Video Generation [62.64811405314847]
VidCRAFT3は、画像から映像までを正確に生成するための新しいフレームワークである。
カメラの動き、物体の動き、照明方向を同時に制御できる。
ベンチマークデータセットの実験では、高品質のビデオコンテンツの生成におけるVidCRAFT3の有効性が示されている。
論文 参考訳(メタデータ) (2025-02-11T13:11:59Z) - 3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation [83.98251722144195]
制御可能なビデオ生成における従来の方法は、主に物体の動きを操作するために2D制御信号を利用する。
本稿では3次元空間におけるマルチエンタリティダイナミクスを制御する頑健なコントローラである3DTrajMasterを紹介する。
3DTrajMasterは,多心性3D動作を制御するための精度と一般化の両面において,新しい最先端技術を設定する。
論文 参考訳(メタデータ) (2024-12-10T18:55:13Z) - InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models [75.03495065452955]
InfiniCubeはダイナミックな3次元駆動シーンを高忠実かつ制御性で生成するスケーラブルな方法である。
制御可能でリアルな3Dドライビングシーンを生成でき、モデルの有効性と優越性を広範囲にわたる実験により検証できる。
論文 参考訳(メタデータ) (2024-12-05T07:32:20Z) - DreamVideo-2: Zero-Shot Subject-Driven Video Customization with Precise Motion Control [42.506988751934685]
本研究では、特定の主題と動きの軌跡でビデオを生成することができるゼロショットビデオカスタマイズフレームワークDreamVideo-2を提案する。
具体的には,対象学習におけるモデル固有の能力を活用する参照アテンションを導入する。
我々は,ボックスマスクの頑健な動作信号を完全に活用して,高精度な動作制御を実現するためのマスク誘導型モーションモジュールを考案した。
論文 参考訳(メタデータ) (2024-10-17T17:52:57Z) - VD3D: Taming Large Video Diffusion Transformers for 3D Camera Control [74.5434726968562]
Plucker座標に基づく制御ネットライクなコンディショニング機構を用いた3次元カメラ制御のためのトランスフォーマー映像を試作する。
我々の研究は、トランスフォーマーに基づくビデオ拡散モデルのカメラ制御を可能にする最初のものである。
論文 参考訳(メタデータ) (2024-07-17T17:59:05Z) - Motion-Zero: Zero-Shot Moving Object Control Framework for Diffusion-Based Video Generation [10.5019872575418]
本研究では,ゼロショット移動物体軌道制御フレームワークであるMotion-Zeroを提案する。
本手法は、トレーニングプロセスなしで、様々な最先端ビデオ拡散モデルに柔軟に適用できる。
論文 参考訳(メタデータ) (2024-01-18T17:22:37Z) - DragNUWA: Fine-grained Control in Video Generation by Integrating Text,
Image, and Trajectory [126.4597063554213]
DragNUWAは、オープンドメイン拡散に基づくビデオ生成モデルである。
意味的、空間的、時間的視点からビデオ内容のきめ細かい制御を提供する。
本実験はDragNUWAの有効性を検証し,ビデオ生成における微粒化制御における優れた性能を示した。
論文 参考訳(メタデータ) (2023-08-16T01:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。