論文の概要: Region of Interest Loss for Anonymizing Learned Image Compression
- arxiv url: http://arxiv.org/abs/2406.05726v1
- Date: Sun, 9 Jun 2024 10:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 18:17:07.642866
- Title: Region of Interest Loss for Anonymizing Learned Image Compression
- Title(参考訳): 学習画像圧縮の匿名化における関心喪失領域
- Authors: Christoph Liebender, Ranulfo Bezerra, Kazunori Ohno, Satoshi Tadokoro,
- Abstract要約: 人間の顔が認識不能になり,人体が検出不能となるような,十分な匿名化を実現する方法を示す。
このアプローチは、ネットワーク越しに機密性の高い匿名化データを送信するのではなく、キャプチャデバイス上の1ステップで圧縮と匿名化を可能にする。
- 参考スコア(独自算出の注目度): 3.0936354370614607
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The use of AI in public spaces continually raises concerns about privacy and the protection of sensitive data. An example is the deployment of detection and recognition methods on humans, where images are provided by surveillance cameras. This results in the acquisition of great amounts of sensitive data, since the capture and transmission of images taken by such cameras happens unaltered, for them to be received by a server on the network. However, many applications do not explicitly require the identity of a given person in a scene; An anonymized representation containing information of the person's position while preserving the context of them in the scene suffices. We show how using a customized loss function on region of interests (ROI) can achieve sufficient anonymization such that human faces become unrecognizable while persons are kept detectable, by training an end-to-end optimized autoencoder for learned image compression that utilizes the flexibility of the learned analysis and reconstruction transforms for the task of mutating parts of the compression result. This approach enables compression and anonymization in one step on the capture device, instead of transmitting sensitive, nonanonymized data over the network. Additionally, we evaluate how this anonymization impacts the average precision of pre-trained foundation models on detecting faces (MTCNN) and humans (YOLOv8) in comparison to non-ANN based methods, while considering compression rate and latency.
- Abstract(参考訳): 公共空間におけるAIの使用は、プライバシーと機密データの保護に対する懸念を継続的に高める。
例として、人間に対する検出と認識の方法の展開があり、監視カメラによって画像が提供される。
このようなカメラによって撮影された画像のキャプチャと送信は、ネットワーク上のサーバによって受信されるため、大量の機密データを取得することになる。
しかし、多くのアプリケーションは、シーン内の特定の人物のアイデンティティを明示的に必要とせず、シーン内の人物のコンテキストを保ちながら、その人物の位置に関する情報を含む匿名化された表現が十分である。
学習画像圧縮のためのエンドツーエンド最適化オートエンコーダを訓練し、学習した解析の柔軟性を活用し、圧縮結果の一部を変更するタスクに再構成変換を施すことにより、関心領域(ROI)にカスタマイズされた損失関数を用いることで、人間の顔が検知不能になるような十分な匿名化を実現する方法を示す。
このアプローチは、ネットワーク越しに機密性の高い匿名化データを送信するのではなく、キャプチャデバイス上の1ステップで圧縮と匿名化を可能にする。
さらに、この匿名化が、非ANN法と比較して、事前学習した基礎モデルの平均精度が顔検出(MTCNN)と人間検出(YOLOv8)に与える影響を、圧縮率と遅延を考慮して評価する。
関連論文リスト
- AnonyNoise: Anonymizing Event Data with Smart Noise to Outsmart Re-Identification and Preserve Privacy [12.130336423803328]
イベントカメラは、人間の解釈が困難で出力が希少であるため、当初は有望な解決策と考えられていた。
近年のディープラーニングの進歩は、ニューラルネットワークが高品質なグレースケールのイメージを再構築し、イベントカメラのデータを使って個人を再識別できることを証明している。
本稿では,人間だけでなくニューラルネットワークによる再同定を防止するための,最初のイベント匿名化パイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-25T14:43:03Z) - Individualized Deepfake Detection Exploiting Traces Due to Double
Neural-Network Operations [32.33331065408444]
既存のディープフェイク検出器は、画像が特定かつ識別可能な個人と関連付けられている場合、この検出タスクに最適化されない。
本研究では,個々の人物の顔画像のディープフェイク検出に焦点を当てた。
ニューラルネットワークのイデオロシティ特性を利用して検出性能を向上できることを実証する。
論文 参考訳(メタデータ) (2023-12-13T10:21:00Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
より良い開発AIシステムと、センシティブなトレーニングデータから距離を置くことの間の、ソフトウェアエンジニアに関する大きな対立が露呈している。
画像が暗号化され、人間に認識され、機械に認識される」という、効率的なプライバシー保護学習パラダイムを提案する。
提案手法は,機械が認識可能な情報を保存しながら,暗号化された画像が人間に認識されなくなることを保証できることを示す。
論文 参考訳(メタデータ) (2023-06-06T13:41:37Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
本研究では,修正データの利用性を確保しつつ,顔画像をシームレスに識別する新しいアルゴリズムであるDisguiseを紹介する。
本手法は, 難読化と非可逆性を最大化するために, 変分機構を用いて生成した合成物を用いて, 描写されたアイデンティティを抽出し置換することを含む。
提案手法を複数のデータセットを用いて広範に評価し,様々な下流タスクにおける従来の手法と比較して,高い非識別率と一貫性を示す。
論文 参考訳(メタデータ) (2023-03-23T13:50:46Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Deep Learning-based Anonymization of Chest Radiographs: A
Utility-preserving Measure for Patient Privacy [7.240611820374677]
従来の匿名化処理は、画像中の個人情報をブラックボックスで隠蔽して行う。
このような単純な測定は、胸部X線写真に生体情報を保持し、リンケージ攻撃によって患者の再同定を可能にする。
胸部X線画像の匿名化を目的とした,初となる深層学習型アプローチ(PriCheXy-Net)を提案する。
論文 参考訳(メタデータ) (2022-09-23T11:36:32Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
本稿では,周波数領域における差分プライバシーを用いたプライバシ保護顔認証手法を提案する。
本手法はいくつかの古典的顔認証テストセットで非常によく機能する。
論文 参考訳(メタデータ) (2022-07-15T07:15:36Z) - Privacy-Preserving Image Acquisition Using Trainable Optical Kernel [50.1239616836174]
本稿では、画像センサに到達する前に、光学領域の感度の高い識別情報を除去する訓練可能な画像取得手法を提案する。
イメージセンサに到達する前に、センシティブなコンテンツが抑制されるため、デジタルドメインには入らないため、いかなる種類のプライバシー攻撃でも検索できない。
論文 参考訳(メタデータ) (2021-06-28T11:08:14Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
本研究では,セマンティックデータ拡張法 (SDA) を提案する。
また,適応的セマンティックデータ拡張 (ASDA) を提案する。
最先端の結果は、挑戦的なベンチマークで得られます。
論文 参考訳(メタデータ) (2020-08-03T07:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。