MrRank: Improving Question Answering Retrieval System through Multi-Result Ranking Model
- URL: http://arxiv.org/abs/2406.05733v1
- Date: Sun, 9 Jun 2024 11:00:01 GMT
- Title: MrRank: Improving Question Answering Retrieval System through Multi-Result Ranking Model
- Authors: Danupat Khamnuansin, Tawunrat Chalothorn, Ekapol Chuangsuwanich,
- Abstract summary: Large Language Models (LLMs) often struggle with hallucinations and outdated information.
To address this, Information Retrieval (IR) systems can be employed to augment LLMs with up-to-date knowledge.
We propose an approach that leverages learning-to-rank techniques to combine heterogeneous IR systems.
- Score: 4.173772253427094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) often struggle with hallucinations and outdated information. To address this, Information Retrieval (IR) systems can be employed to augment LLMs with up-to-date knowledge. However, existing IR techniques contain deficiencies, posing a performance bottleneck. Given the extensive array of IR systems, combining diverse approaches presents a viable strategy. Nevertheless, prior attempts have yielded restricted efficacy. In this work, we propose an approach that leverages learning-to-rank techniques to combine heterogeneous IR systems. We demonstrate the method on two Retrieval Question Answering (ReQA) tasks. Our empirical findings exhibit a significant performance enhancement, outperforming previous approaches and achieving state-of-the-art results on ReQA SQuAD.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Unified Active Retrieval for Retrieval Augmented Generation [69.63003043712696]
In Retrieval-Augmented Generation (RAG), retrieval is not always helpful and applying it to every instruction is sub-optimal.
Existing active retrieval methods face two challenges: 1.
They usually rely on a single criterion, which struggles with handling various types of instructions.
They depend on specialized and highly differentiated procedures, and thus combining them makes the RAG system more complicated.
arXiv Detail & Related papers (2024-06-18T12:09:02Z) - IM-RAG: Multi-Round Retrieval-Augmented Generation Through Learning Inner Monologues [10.280113107290067]
The IM-RAG approach integrates Information Retrieval systems with Large Language Models (LLMs) to support multi-round RAG.
The entire IM process is optimized via Reinforcement Learning (RL) where a Progress Tracker is incorporated to provide mid-step rewards.
The results show that our approach achieves state-of-the-art (SOTA) performance while providing high flexibility in integrating IR modules.
arXiv Detail & Related papers (2024-05-15T12:41:20Z) - Self-Retrieval: End-to-End Information Retrieval with One Large Language Model [97.71181484082663]
We introduce Self-Retrieval, a novel end-to-end LLM-driven information retrieval architecture.
Self-Retrieval internalizes the retrieval corpus through self-supervised learning, transforms the retrieval process into sequential passage generation, and performs relevance assessment for reranking.
arXiv Detail & Related papers (2024-02-23T18:45:35Z) - The Power of Noise: Redefining Retrieval for RAG Systems [19.387105120040157]
Retrieval-Augmented Generation (RAG) has emerged as a method to extend beyond the pre-trained knowledge of Large Language Models.
We focus on the type of passages IR systems within a RAG solution should retrieve.
arXiv Detail & Related papers (2024-01-26T14:14:59Z) - ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.508669199496474]
We develop a ReAct-style LLM agent with the ability to reason and act upon external knowledge.
We refine the agent through a ReST-like method that iteratively trains on previous trajectories.
Starting from a prompted large model and after just two iterations of the algorithm, we can produce a fine-tuned small model.
arXiv Detail & Related papers (2023-12-15T18:20:15Z) - QUILL: Query Intent with Large Language Models using Retrieval
Augmentation and Multi-stage Distillation [1.516937009186805]
We show that Retrieval Augmentation of queries provides LLMs with valuable additional context enabling improved understanding.
We use a novel two-stage distillation approach that allows us to carry over the gains of retrieval augmentation, without suffering the increased compute typically associated with it.
arXiv Detail & Related papers (2022-10-27T18:44:58Z) - Reinforcement Learning for Branch-and-Bound Optimisation using
Retrospective Trajectories [72.15369769265398]
Machine learning has emerged as a promising paradigm for branching.
We propose retro branching; a simple yet effective approach to RL for branching.
We outperform the current state-of-the-art RL branching algorithm by 3-5x and come within 20% of the best IL method's performance on MILPs with 500 constraints and 1000 variables.
arXiv Detail & Related papers (2022-05-28T06:08:07Z) - An Investigation of Replay-based Approaches for Continual Learning [79.0660895390689]
Continual learning (CL) is a major challenge of machine learning (ML) and describes the ability to learn several tasks sequentially without catastrophic forgetting (CF)
Several solution classes have been proposed, of which so-called replay-based approaches seem very promising due to their simplicity and robustness.
We empirically investigate replay-based approaches of continual learning and assess their potential for applications.
arXiv Detail & Related papers (2021-08-15T15:05:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.