Vision Mamba: Cutting-Edge Classification of Alzheimer's Disease with 3D MRI Scans
- URL: http://arxiv.org/abs/2406.05757v1
- Date: Sun, 9 Jun 2024 12:23:22 GMT
- Title: Vision Mamba: Cutting-Edge Classification of Alzheimer's Disease with 3D MRI Scans
- Authors: Muthukumar K A, Amit Gurung, Priya Ranjan,
- Abstract summary: Classifying 3D MRI images for early detection of Alzheimer's disease is a critical task in medical imaging.
Traditional approaches using Convolutional Neural Networks (CNNs) and Transformers face significant challenges in this domain.
We propose the use of Vision Mamba, an advanced model based on State Space Models (SSMs) for the classification of 3D MRI images to detect Alzheimer's disease.
- Score: 0.6827423171182153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifying 3D MRI images for early detection of Alzheimer's disease is a critical task in medical imaging. Traditional approaches using Convolutional Neural Networks (CNNs) and Transformers face significant challenges in this domain. CNNs, while effective in capturing local spatial features, struggle with long-range dependencies and often require extensive computational resources for high-resolution 3D data. Transformers, on the other hand, excel in capturing global context but suffer from quadratic complexity in inference time and require substantial memory, making them less efficient for large-scale 3D MRI data. To address these limitations, we propose the use of Vision Mamba, an advanced model based on State Space Models (SSMs), for the classification of 3D MRI images to detect Alzheimer's disease. Vision Mamba leverages dynamic state representations and the selective scan algorithm, allowing it to efficiently capture and retain important spatial information across 3D volumes. By dynamically adjusting state transitions based on input features, Vision Mamba can selectively retain relevant information, leading to more accurate and computationally efficient processing of 3D MRI data. Our approach combines the parallelizable nature of convolutional operations during training with the efficient, recurrent processing of states during inference. This architecture not only improves computational efficiency but also enhances the model's ability to handle long-range dependencies within 3D medical images. Experimental results demonstrate that Vision Mamba outperforms traditional CNN and Transformer models accuracy, making it a promising tool for the early detection of Alzheimer's disease using 3D MRI data.
Related papers
- EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation [3.6813810514531085]
We introduce a novel 3D medical image segmentation model called EM-Net. Inspired by its success, we introduce a novel Mamba-based 3D medical image segmentation model called EM-Net.
Comprehensive experiments on two challenging multi-organ datasets with other state-of-the-art (SOTA) algorithms show that our method exhibits better segmentation accuracy while requiring nearly half the parameter size of SOTA models and 2x faster training speed.
arXiv Detail & Related papers (2024-09-26T09:34:33Z) - Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
Current anomaly detection methods excel with benchmark industrial data but struggle with medical data due to varying definitions of 'normal' and 'abnormal'
We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost.
arXiv Detail & Related papers (2024-08-28T17:20:56Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Enhancing MRI-Based Classification of Alzheimer's Disease with Explainable 3D Hybrid Compact Convolutional Transformers [13.743241062824548]
Alzheimer's disease (AD) presents a formidable global health challenge.
Traditional analysis methods often struggle to discern intricate 3D patterns crucial for AD identification.
We introduce the 3D Hybrid Compact Convolutional Transformers 3D (HCCT)
arXiv Detail & Related papers (2024-03-24T14:35:06Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - MinD-3D: Reconstruct High-quality 3D objects in Human Brain [50.534007259536715]
Recon3DMind is an innovative task aimed at reconstructing 3D visuals from Functional Magnetic Resonance Imaging (fMRI) signals.
We present the fMRI-Shape dataset, which includes data from 14 participants and features 360-degree videos of 3D objects.
We propose MinD-3D, a novel and effective three-stage framework specifically designed to decode the brain's 3D visual information from fMRI signals.
arXiv Detail & Related papers (2023-12-12T18:21:36Z) - E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D
Medical Image Segmentation [36.367368163120794]
We propose a 3D medical image segmentation model, named Efficient to Efficient Network (E2ENet)
It incorporates two parametrically and computationally efficient designs.
It consistently achieves a superior trade-off between accuracy and efficiency across various resource constraints.
arXiv Detail & Related papers (2023-12-07T22:13:37Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
Brain vasculature dysfunctions such as stalled blood flow in cerebral capillaries are associated with cognitive decline and pathogenesis in Alzheimer's disease.
Here, we describe a deep learning-based approach for automatic detection of stalled capillaries in brain images based on 3D convolutional neural networks.
In this setting, our approach outperformed other methods and demonstrated state-of-the-art results, achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3% specificity.
arXiv Detail & Related papers (2021-04-04T20:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.