Time Evolution of Relativistic Quantum Fields in Spatial Subregions
- URL: http://arxiv.org/abs/2406.05795v1
- Date: Sun, 9 Jun 2024 14:11:34 GMT
- Title: Time Evolution of Relativistic Quantum Fields in Spatial Subregions
- Authors: Markus Schröfl, Stefan Floerchinger,
- Abstract summary: We study the time evolution of a state of a relativistic quantum field theory restricted to a spatial subregion $Omega$.
We show how the influence of the environment gets encoded in a boundary term.
We find that the boundary conditions obtained in this way are energy non-conserving and non-local in space and time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the time evolution of a state of a relativistic quantum field theory restricted to a spatial subregion $\Omega$. More precisely, we use the Feynman-Vernon influence functional formalism to describe the dynamics of the field theory in the interior of $\Omega$ arising after integrating out the degrees of freedom in the exterior. We show how the influence of the environment gets encoded in a boundary term. Furthermore, we derive a stochastic equation of motion for the field expectation value in the interior. We find that the boundary conditions obtained in this way are energy non-conserving and non-local in space and time. Our results find applications in understanding the emergence of local thermalization in relativistic quantum field theories and the relationship between quantum field theory and relativistic fluid dynamics.
Related papers
- Interacting Dirac fields in an expanding universe: dynamical condensates and particle production [41.94295877935867]
This work focuses on a self-interacting field theory of Dirac fermions in an expanding Friedmann-Robertson-Walker universe.
We study how the non-trivialative condensates arise and, more importantly, how their real-time evolution has an impact on particle production.
arXiv Detail & Related papers (2024-08-12T14:21:25Z) - Localization in Quantum Field Theory for inertial and accelerated
observers [0.0]
We study the problem of localization in Quantum Field Theory (QFT) from the point of view of inertial and accelerated experimenters.
We consider the Newton-Wigner, the Algebraic Quantum Field Theory (AQFT) and the modal localization schemes.
arXiv Detail & Related papers (2024-01-08T15:54:27Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - The Fermionic Entanglement Entropy and Area Law for the Relativistic Dirac Vacuum State [44.99833362998488]
We consider the fermionic entanglement entropy for the free Dirac field in a bounded spatial region of Minkowski spacetime.
An area law is proven in the limiting cases where the volume tends to infinity and/or the regularization length tends to zero.
arXiv Detail & Related papers (2023-10-05T12:08:03Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Space-Time-Matter: Some Notes on the Localization Problem in
Relativistic Quantum Theory [0.0]
This work aims to shed some light on the meaning of the positive energy assumption in relativistic quantum theory.
It is shown that the positive energy property of solutions of relativistic wave equations is very fragile with respect to state transformations beyond free time evolution.
arXiv Detail & Related papers (2023-05-29T14:29:26Z) - Variational Neural-Network Ansatz for Continuum Quantum Field Theory [0.9208007322096533]
Physicists dating back to Feynman have lamented the difficulties of applying the variational principle to quantum field theories.
We introduce neural-network quantum field states, a deep learning ansatz that enables application of the variational principle to non-relativistic quantum field theories.
arXiv Detail & Related papers (2022-12-01T18:58:40Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - The Entropic Dynamics of Relativistic Quantum Fields in Curved
Space-time [0.0]
We apply the Entropic Dynamics (ED) framework to construct a quantum dynamics for scalar fields in space-time.
Using a similar methodology, we construct a theory of quantum scalar fields in flat space-time that is relativistic, but not manifestly so.
We consider such a theory and discuss its plausibility as a candidate for a quantum gravity theory.
arXiv Detail & Related papers (2021-05-14T19:24:21Z) - Functorial evolution of quantum fields [0.0]
We show how familiar notions from Relativity and quantum causality can be recovered in a purely order-theoretic way.
We formulate theory-independent notions of fields over causal orders in a compositional, functorial way.
We introduce notions of symmetry and cellular automata, which we show to subsume existing definitions of Quantum Cellular Automata.
arXiv Detail & Related papers (2020-03-30T08:39:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.