論文の概要: ControlLoc: Physical-World Hijacking Attack on Visual Perception in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2406.05810v1
- Date: Sun, 9 Jun 2024 14:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 17:57:33.317281
- Title: ControlLoc: Physical-World Hijacking Attack on Visual Perception in Autonomous Driving
- Title(参考訳): ControlLoc: 自律運転における視覚知覚に対する物理世界のハイジャック攻撃
- Authors: Chen Ma, Ningfei Wang, Zhengyu Zhao, Qian Wang, Qi Alfred Chen, Chao Shen,
- Abstract要約: 危険な運転シナリオを引き起こすために、デジタルハイジャック攻撃が提案されている。
我々は、自律運転(AD)視覚認識全体のハイジャック脆弱性を活用するために設計された、新しい物理世界の逆パッチアタックであるControlLocを導入する。
- 参考スコア(独自算出の注目度): 30.286501966393388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in adversarial machine learning has focused on visual perception in Autonomous Driving (AD) and has shown that printed adversarial patches can attack object detectors. However, it is important to note that AD visual perception encompasses more than just object detection; it also includes Multiple Object Tracking (MOT). MOT enhances the robustness by compensating for object detection errors and requiring consistent object detection results across multiple frames before influencing tracking results and driving decisions. Thus, MOT makes attacks on object detection alone less effective. To attack such robust AD visual perception, a digital hijacking attack has been proposed to cause dangerous driving scenarios. However, this attack has limited effectiveness. In this paper, we introduce a novel physical-world adversarial patch attack, ControlLoc, designed to exploit hijacking vulnerabilities in entire AD visual perception. ControlLoc utilizes a two-stage process: initially identifying the optimal location for the adversarial patch, and subsequently generating the patch that can modify the perceived location and shape of objects with the optimal location. Extensive evaluations demonstrate the superior performance of ControlLoc, achieving an impressive average attack success rate of around 98.1% across various AD visual perceptions and datasets, which is four times greater effectiveness than the existing hijacking attack. The effectiveness of ControlLoc is further validated in physical-world conditions, including real vehicle tests under different conditions such as outdoor light conditions with an average attack success rate of 77.5%. AD system-level impact assessments are also included, such as vehicle collision, using industry-grade AD systems and production-grade AD simulators with an average vehicle collision rate and unnecessary emergency stop rate of 81.3%.
- Abstract(参考訳): 近年の対向機械学習の研究は、自律運転(AD)における視覚的知覚に焦点を当てており、印刷された対向パッチが物体検出装置を攻撃できることが示されている。
しかし、ADの視覚的知覚は単なる物体検出以上のものを含んでいることに注意する必要がある。
MOTは、トラッキング結果と駆動決定に影響を与える前に、オブジェクト検出エラーを補償し、複数のフレームにわたって一貫したオブジェクト検出結果を必要とすることにより、ロバスト性を高める。
したがって、MOTはオブジェクト検出のみを効果的に攻撃する。
このような堅牢なAD視覚認識を攻撃するために、危険な運転シナリオを引き起こすためにデジタルハイジャック攻撃が提案されている。
しかし、この攻撃は効果が限られている。
本稿では,AD視覚認識におけるハイジャック脆弱性の活用を目的とした,新たな物理世界対応パッチアタックであるControlLocを紹介する。
ControlLocは2段階のプロセスを使用しており、最初は敵パッチの最適な位置を特定し、次に最適な位置で認識されたオブジェクトの位置と形状を変更するパッチを生成する。
広範囲な評価は、既存のハイジャック攻撃の4倍の有効性を持つ様々なAD視覚認識とデータセットに対して、印象的な平均攻撃成功率約98.1%を達成したコントロールロックの優れたパフォーマンスを示している。
ControlLocの有効性は、屋外の光条件や平均攻撃成功率77.5%といった異なる条件下での実車試験を含む、物理世界の条件でさらに検証されている。
ADシステムレベルの影響評価には、自動車衝突、業界レベルのADシステム、平均車両衝突率と不要緊急停止率81.3%のADシミュレータなどが含まれる。
関連論文リスト
- DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Benchmarking Adversarial Patch Against Aerial Detection [11.591143898488312]
適応パッチに基づく新しい物理攻撃(AP-PA)フレームワークを提案する。
AP-PAは、物理力学と様々なスケールに適応する逆パッチを生成する。
航空探知作業における敵パッチの攻撃効果を評価するため, 包括的, 一貫性, 厳密なベンチマークを最初に確立した。
論文 参考訳(メタデータ) (2022-10-30T07:55:59Z) - A Certifiable Security Patch for Object Tracking in Self-Driving Systems
via Historical Deviation Modeling [22.753164675538457]
自動運転車における物体追跡の安全性に関する最初の体系的研究について述べる。
我々は,KF(Kalman Filter)に基づくメインストリームマルチオブジェクトトラッカー(MOT)が,マルチセンサ融合機構が有効であっても安全でないことを証明した。
我々は、KFベースのMOTのための単純かつ効果的なセキュリティパッチを提案し、その中核は、KFの観測と予測に対する焦点のバランスをとるための適応戦略である。
論文 参考訳(メタデータ) (2022-07-18T12:30:24Z) - Physical Attack on Monocular Depth Estimation with Optimal Adversarial
Patches [18.58673451901394]
我々は学習に基づく単眼深度推定(MDE)に対する攻撃を開発する。
我々は,攻撃のステルス性と有効性を,オブジェクト指向の対角設計,感度領域の局所化,自然スタイルのカモフラージュとバランスさせる。
実験結果から,本手法は,異なる対象オブジェクトやモデルに対して,ステルス性,有効,堅牢な逆パッチを生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-11T08:59:09Z) - Adversarial Attack and Defense of YOLO Detectors in Autonomous Driving
Scenarios [3.236217153362305]
本稿では,自律走行車における視覚的検出の客観性に着目した効果的な攻撃戦略を提案する。
実験の結果、対象のアスペクトを標的とした攻撃は45.17%と43.50%が、分類や局所化の損失から生じた攻撃よりも効果的であることが示されている。
提案手法は, KITTI と COCO_traffic でそれぞれ最大21% と 12% mAP の目標指向攻撃に対する検出器の堅牢性を向上させることができる。
論文 参考訳(メタデータ) (2022-02-10T00:47:36Z) - ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding
Attacks via Patch-agnostic Masking [95.6347501381882]
物体探知機は物理的世界のパッチ隠蔽攻撃に弱いことが判明した。
我々は,堅牢なオブジェクト検出器を構築するためのフレームワークとしてObjectSeekerを提案する。
論文 参考訳(メタデータ) (2022-02-03T19:34:25Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
本稿では,MDFに基づくADシステムにおけるセキュリティ問題の最初の研究について述べる。
物理的に実現可能な逆3Dプリントオブジェクトを生成し、ADシステムが検出に失敗してクラッシュする。
以上の結果から,攻撃は様々なオブジェクトタイプおよびMSFに対して90%以上の成功率を達成した。
論文 参考訳(メタデータ) (2021-06-17T05:11:07Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
本稿では,LiDAR検出器を騙すために,汎用な3次元対向物体を生成する手法を提案する。
特に,LiDAR検出器から車両を完全に隠蔽するために,車両の屋根上に対向物体を配置し,その成功率は80%であることを示した。
これは、限られたトレーニングデータから見知らぬ条件下での、より安全な自動運転への一歩だ。
論文 参考訳(メタデータ) (2020-04-01T16:11:04Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。