論文の概要: PSBD: Prediction Shift Uncertainty Unlocks Backdoor Detection
- arxiv url: http://arxiv.org/abs/2406.05826v1
- Date: Sun, 9 Jun 2024 15:31:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 17:47:48.428171
- Title: PSBD: Prediction Shift Uncertainty Unlocks Backdoor Detection
- Title(参考訳): PSBD: 予測シフトの不確かさがバックドア検出をアンロック
- Authors: Wei Li, Pin-Yu Chen, Sijia Liu, Ren Wang,
- Abstract要約: 予測シフトバックドア検出(英: Prediction Shift Backdoor Detection、PSBD)は、ディープニューラルネットワークにおけるバックドアサンプルを識別する新しい手法である。
PSBDは興味深い予測シフト(PS)現象によって動機付けられており、クリーンなデータに対する有害なモデルの予測は、しばしば真のラベルから別のラベルへとシフトする。
PSBDは、モデル推論中にドロップアウト層をオン/オフする際の確率値のばらつきである予測シフト不確実性(PSU)を計算することで、バックドアトレーニングサンプルを特定する。
- 参考スコア(独自算出の注目度): 57.571451139201855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are susceptible to backdoor attacks, where adversaries manipulate model predictions by inserting malicious samples into the training data. Currently, there is still a lack of direct filtering methods for identifying suspicious training data to unveil potential backdoor samples. In this paper, we propose a novel method, Prediction Shift Backdoor Detection (PSBD), leveraging an uncertainty-based approach requiring minimal unlabeled clean validation data. PSBD is motivated by an intriguing Prediction Shift (PS) phenomenon, where poisoned models' predictions on clean data often shift away from true labels towards certain other labels with dropout applied during inference, while backdoor samples exhibit less PS. We hypothesize PS results from neuron bias effect, making neurons favor features of certain classes. PSBD identifies backdoor training samples by computing the Prediction Shift Uncertainty (PSU), the variance in probability values when dropout layers are toggled on and off during model inference. Extensive experiments have been conducted to verify the effectiveness and efficiency of PSBD, which achieves state-of-the-art results among mainstream detection methods.
- Abstract(参考訳): ディープニューラルネットワークはバックドア攻撃の影響を受けやすく、敵はトレーニングデータに悪意あるサンプルを挿入することでモデル予測を操作する。
現在、疑わしいトレーニングデータを同定し、潜在的なバックドアサンプルを明らかにするための直接フィルタリング方法が不足している。
本稿では,未ラベルのクリーンな検証データを最小限に抑えた不確実性に基づく手法である予測シフトバックドア検出(PSBD)を提案する。
PSBDは興味深い予測シフト(PS)現象によって動機付けられており、汚染されたモデルによるクリーンなデータに対する予測は、推論中にドロップアウトを施した真のラベルから、推論時に他のラベルへとシフトすることが多い。
我々は、ニューロンバイアス効果によるPS結果の仮説を立て、特定のクラスの特徴をニューロンに好ませる。
PSBDは、モデル推論中にドロップアウト層をオン/オフする際の確率値のばらつきである予測シフト不確実性(PSU)を計算することで、バックドアトレーニングサンプルを特定する。
本研究は,PSBDの有効性と有効性を検証し,本研究の主流となる検出手法について検討した。
関連論文リスト
- Backdoor Defense through Self-Supervised and Generative Learning [0.0]
このようなデータのトレーニングは、選択されたテストサンプルに悪意のある推論を引き起こすバックドアを注入する。
本稿では,自己教師付き表現空間におけるクラスごとの分布生成モデルに基づくアプローチを提案する。
どちらの場合も、クラスごとの生成モデルにより、有毒なデータを検出し、データセットをクリーン化することができます。
論文 参考訳(メタデータ) (2024-09-02T11:40:01Z) - IBD-PSC: Input-level Backdoor Detection via Parameter-oriented Scaling Consistency [20.61046457594186]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
本稿では、悪意のあるテスト画像のフィルタリングを行うための、シンプルで効果的な入力レベルのバックドア検出(IBD-PSCと呼ばれる)を提案する。
論文 参考訳(メタデータ) (2024-05-16T03:19:52Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - Setting the Trap: Capturing and Defeating Backdoors in Pretrained
Language Models through Honeypots [68.84056762301329]
近年の研究では、バックドア攻撃に対するプレトレーニング言語モデル(PLM)の感受性が明らかにされている。
バックドア情報のみを吸収するために,ハニーポットモジュールをオリジナルのPLMに統合する。
我々の設計は、PLMの低層表現が十分なバックドア特徴を持っているという観察に動機づけられている。
論文 参考訳(メタデータ) (2023-10-28T08:21:16Z) - XGBD: Explanation-Guided Graph Backdoor Detection [21.918945251903523]
バックドア攻撃は、グラフ学習モデルに重大なセキュリティリスクをもたらす。
トポロジ情報を活用するために,説明誘導型バックドア検出手法を提案する。
論文 参考訳(メタデータ) (2023-08-08T17:10:23Z) - ParaFuzz: An Interpretability-Driven Technique for Detecting Poisoned
Samples in NLP [29.375957205348115]
本稿では,モデル予測の解釈可能性に着目した,革新的な試験時間有毒サンプル検出フレームワークを提案する。
我々は、最先端の大規模言語モデルであるChatGPTをパラフレーズとして使用し、迅速なエンジニアリング問題としてトリガー除去タスクを定式化する。
論文 参考訳(メタデータ) (2023-08-04T03:48:28Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - PiDAn: A Coherence Optimization Approach for Backdoor Attack Detection
and Mitigation in Deep Neural Networks [22.900501880865658]
バックドア攻撃はディープニューラルネットワーク(DNN)に新たな脅威をもたらす
汚染されたデータを浄化するコヒーレンス最適化に基づくアルゴリズムであるPiDAnを提案する。
当社のPiDAnアルゴリズムは90%以上の感染クラスを検出でき、95%の有毒サンプルを識別できる。
論文 参考訳(メタデータ) (2022-03-17T12:37:21Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。