TTM-RE: Memory-Augmented Document-Level Relation Extraction
- URL: http://arxiv.org/abs/2406.05906v1
- Date: Sun, 9 Jun 2024 20:18:58 GMT
- Title: TTM-RE: Memory-Augmented Document-Level Relation Extraction
- Authors: Chufan Gao, Xuan Wang, Jimeng Sun,
- Abstract summary: We propose TTM-RE, a novel approach that integrates a trainable memory module, known as the Token Turing Machine, with a noisy-robust loss function.
Experiments on ReDocRED, a benchmark dataset for document-level relation extraction, reveal that TTM-RE achieves state-of-the-art performance.
- Score: 30.142461633461394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document-level relation extraction aims to categorize the association between any two entities within a document. We find that previous methods for document-level relation extraction are ineffective in exploiting the full potential of large amounts of training data with varied noise levels. For example, in the ReDocRED benchmark dataset, state-of-the-art methods trained on the large-scale, lower-quality, distantly supervised training data generally do not perform better than those trained solely on the smaller, high-quality, human-annotated training data. To unlock the full potential of large-scale noisy training data for document-level relation extraction, we propose TTM-RE, a novel approach that integrates a trainable memory module, known as the Token Turing Machine, with a noisy-robust loss function that accounts for the positive-unlabeled setting. Extensive experiments on ReDocRED, a benchmark dataset for document-level relation extraction, reveal that TTM-RE achieves state-of-the-art performance (with an absolute F1 score improvement of over 3%). Ablation studies further illustrate the superiority of TTM-RE in other domains (the ChemDisGene dataset in the biomedical domain) and under highly unlabeled settings.
Related papers
- Importance-Aware Data Augmentation for Document-Level Neural Machine
Translation [51.74178767827934]
Document-level neural machine translation (DocNMT) aims to generate translations that are both coherent and cohesive.
Due to its longer input length and limited availability of training data, DocNMT often faces the challenge of data sparsity.
We propose a novel Importance-Aware Data Augmentation (IADA) algorithm for DocNMT that augments the training data based on token importance information estimated by the norm of hidden states and training gradients.
arXiv Detail & Related papers (2024-01-27T09:27:47Z) - Consistency Guided Knowledge Retrieval and Denoising in LLMs for
Zero-shot Document-level Relation Triplet Extraction [43.50683283748675]
Document-level Relation Triplet Extraction (DocRTE) is a fundamental task in information systems that aims to simultaneously extract entities with semantic relations from a document.
Existing methods heavily rely on a substantial amount of fully labeled data.
Recent advanced Large Language Models (LLMs), such as ChatGPT and LLaMA, exhibit impressive long-text generation capabilities.
arXiv Detail & Related papers (2024-01-24T17:04:28Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
We introduce a novel noisy self-training framework combined with synthetic queries.
Experimental results show that our method improves consistently over existing methods.
Our method is data efficient and outperforms competitive baselines.
arXiv Detail & Related papers (2023-11-27T06:19:50Z) - Document-Level In-Context Few-Shot Relation Extraction via Pre-Trained Language Models [29.94694305204144]
We present a novel framework for document-level in-context few-shot relation extraction.
We evaluate our framework using DocRED, the largest publicly available dataset for document-level relation extraction.
arXiv Detail & Related papers (2023-10-17T09:10:27Z) - A Unified Positive-Unlabeled Learning Framework for Document-Level
Relation Extraction with Different Levels of Labeling [5.367772036988716]
Document-level relation extraction (RE) aims to identify relations between entities across multiple sentences.
We propose a unified positive-unlabeled learning framework - shift and squared ranking loss.
Our method achieves an improvement of about 14 F1 points relative to the previous baseline with incomplete labeling.
arXiv Detail & Related papers (2022-10-17T02:54:49Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Denoising Relation Extraction from Document-level Distant Supervision [92.76441007250197]
We propose a novel pre-trained model for DocRE, which denoises the document-level DS data via multiple pre-training tasks.
Experimental results on the large-scale DocRE benchmark show that our model can capture useful information from noisy DS data and achieve promising results.
arXiv Detail & Related papers (2020-11-08T02:05:25Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.