論文の概要: MeanSparse: Post-Training Robustness Enhancement Through Mean-Centered Feature Sparsification
- arxiv url: http://arxiv.org/abs/2406.05927v1
- Date: Sun, 9 Jun 2024 22:14:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 15:25:59.280114
- Title: MeanSparse: Post-Training Robustness Enhancement Through Mean-Centered Feature Sparsification
- Title(参考訳): MeanSparse: 平均中心的特徴空間化によるトレーニング後のロバストネス向上
- Authors: Sajjad Amini, Mohammadreza Teymoorianfard, Shiqing Ma, Amir Houmansadr,
- Abstract要約: 本稿では,敵対的学習モデルの後処理により,畳み込みニューラルネットワーク(CNN)の強靭性を改善するための簡易かつ効果的な手法を提案する。
我々の技術であるMeanSparseは、平均中心特徴ベクトルをスパースする新しい演算子を持つ訓練モデルの活性化関数をカスケードする。
実験によると、RobostBenchのリーダーボードの上位モデルに適用すると、新しいロバストネス記録が72.08%に達する。
- 参考スコア(独自算出の注目度): 32.70084821901212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a simple yet effective method to improve the robustness of Convolutional Neural Networks (CNNs) against adversarial examples by post-processing an adversarially trained model. Our technique, MeanSparse, cascades the activation functions of a trained model with novel operators that sparsify mean-centered feature vectors. This is equivalent to reducing feature variations around the mean, and we show that such reduced variations merely affect the model's utility, yet they strongly attenuate the adversarial perturbations and decrease the attacker's success rate. Our experiments show that, when applied to the top models in the RobustBench leaderboard, it achieves a new robustness record of 72.08% (from 71.07%) and 59.64% (from 59.56%) on CIFAR-10 and ImageNet, respectively, in term of AutoAttack accuracy. Code is available at https://github.com/SPIN-UMass/MeanSparse
- Abstract(参考訳): 本稿では,敵対的学習モデルの後処理により,畳み込みニューラルネットワーク(CNN)の強靭性を改善するための簡易かつ効果的な手法を提案する。
我々の技術であるMeanSparseは、平均中心特徴ベクトルをスパースする新しい演算子を持つ訓練モデルの活性化関数をカスケードする。
これは平均値の周りの特徴変動を減少させることと等価であり、そのような変動がモデルの有用性にのみ影響することを示しているが、敵の摂動を強く抑制し、攻撃者の成功率を低下させる。
我々の実験によると、RobostBenchのリーダーボードの上位モデルに適用すると、AutoAttackの精度で、CIFAR-10とImageNetの72.08%(71.07%から)と59.64%(59.56%から)の新しいロバスト性記録を達成する。
コードはhttps://github.com/SPIN-UMass/MeanSparseで入手できる。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
我々は,モデルがゼロショットの逆方向のロバスト性を高めるために,事前訓練されたモデル誘導逆方向の微調整(PMG-AFT)を提案する。
私たちのアプローチは、平均8.72%のクリーンな精度を継続的に改善します。
論文 参考訳(メタデータ) (2024-01-09T04:33:03Z) - Class Incremental Learning for Adversarial Robustness [17.06592851567578]
アドリラルトレーニングは、モデルトレーニング中の敵の例を統合して、堅牢性を高める。
直感的な対人訓練と漸進的な学習を組み合わせることで、頑健さが失われることが容易に分かる。
本稿では, 対向型とクリーン型との出力差を生かしたFPD損失を提案する。
論文 参考訳(メタデータ) (2023-12-06T04:38:02Z) - Dynamic Sparse Training via Balancing the Exploration-Exploitation
Trade-off [19.230329532065635]
スパーストレーニングは、モデルサイズを減らすことで、トレーニングコストを大幅に削減する可能性がある。
既存のスパーストレーニング方法は、主にランダムベースまたはグリーディベースのドロップ・アンド・グロー戦略を使用する。
本研究では,動的スパース学習をスパース接続探索問題として考察する。
実験の結果,提案手法により得られたスパースモデル(最大98%のスパース)は,SOTAスパース訓練法より優れていた。
論文 参考訳(メタデータ) (2022-11-30T01:22:25Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
本稿では,従来の対人訓練用データセットのみを用いて,最先端のパフォーマンスを得るために,分岐直交補助訓練(BORT)を提案する。
我々は, CIFAR-10, CIFAR-100, SVHN に対する Epsilon = 8/255 の ell_infty ノルム束縛摂動に対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-08-17T05:42:59Z) - (Certified!!) Adversarial Robustness for Free! [116.6052628829344]
逆方向の摂動が0.5の2ノルム以内であることに制約された場合,ImageNetでは71%の精度が証明された。
これらの結果は,モデルパラメータの微調整や再学習を必要とせず,事前学習した拡散モデルと画像分類器のみを用いて得られる。
論文 参考訳(メタデータ) (2022-06-21T17:27:27Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Self-Progressing Robust Training [146.8337017922058]
敵対的なトレーニングのような現在の堅牢なトレーニング方法は、敵対的な例を生成するために「攻撃」を明示的に使用します。
我々はSPROUTと呼ばれる自己プログレッシブ・ロバスト・トレーニングのための新しいフレームワークを提案する。
その結果,スケーラブルで効果的で攻撃に依存しないロバストなトレーニング手法に新たな光を当てた。
論文 参考訳(メタデータ) (2020-12-22T00:45:24Z) - To be Robust or to be Fair: Towards Fairness in Adversarial Training [83.42241071662897]
逆行訓練アルゴリズムは、異なるデータ群間の精度と堅牢性に深刻な違いをもたらす傾向がある。
本稿では、敵防衛を行う際の不公平問題を軽減するためのFair-Robust-Learning(FRL)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-13T02:21:54Z) - Smooth Adversarial Training [120.44430400607483]
ネットワークは正確かつ堅牢であると一般に信じられている。
ここでは、敵対的訓練に関する慎重な研究により、これらの共通の信念に挑戦する証拠を提示する。
本研究では、ReLUをそのスムーズな近似で置き換えて、逆行訓練を強化するスムーズな逆行訓練(SAT)を提案する。
論文 参考訳(メタデータ) (2020-06-25T16:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。