Distributionally Robust Safe Sample Elimination under Covariate Shift
- URL: http://arxiv.org/abs/2406.05964v2
- Date: Thu, 14 Nov 2024 05:00:13 GMT
- Title: Distributionally Robust Safe Sample Elimination under Covariate Shift
- Authors: Hiroyuki Hanada, Tatsuya Aoyama, Satoshi Akahane, Tomonari Tanaka, Yoshito Okura, Yu Inatsu, Noriaki Hashimoto, Shion Takeno, Taro Murayama, Hanju Lee, Shinya Kojima, Ichiro Takeuchi,
- Abstract summary: We consider a machine learning setup where one training dataset is used to train multiple models across slightly different data distributions.
We propose the DRSSS method, which combines distributionally robust (DR) optimization and safe sample screening (SSS)
The key benefit of this method is that models trained on the reduced dataset will perform the same as those trained on the full dataset for all possible different environments.
- Score: 16.85444622474742
- License:
- Abstract: We consider a machine learning setup where one training dataset is used to train multiple models across slightly different data distributions. This occurs when customized models are needed for various deployment environments. To reduce storage and training costs, we propose the DRSSS method, which combines distributionally robust (DR) optimization and safe sample screening (SSS). The key benefit of this method is that models trained on the reduced dataset will perform the same as those trained on the full dataset for all possible different environments. In this paper, we focus on covariate shift as a type of data distribution change and demonstrate the effectiveness of our method through experiments.
Related papers
- Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
We show that maintaining performance is feasible even with uneven sample distributions.
We propose a novel active learning based adaptive sampling strategy to optimize the sample selection.
Our approach outperforms the state-of-the-art dataset compression methods.
arXiv Detail & Related papers (2024-07-09T23:09:18Z) - Training Implicit Generative Models via an Invariant Statistical Loss [3.139474253994318]
Implicit generative models have the capability to learn arbitrary complex data distributions.
On the downside, training requires telling apart real data from artificially-generated ones using adversarial discriminators.
We develop a discriminator-free method for training one-dimensional (1D) generative implicit models.
arXiv Detail & Related papers (2024-02-26T09:32:28Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
We focus on scenarios where data distributions vary across multiple segments of the entire population.
We propose a two-stage multiply robust estimation method to improve model performance on each individual segment.
Our method is designed to be implemented with commonly used off-the-shelf machine learning models.
arXiv Detail & Related papers (2024-02-21T22:01:10Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Multi-Domain Joint Training for Person Re-Identification [51.73921349603597]
Deep learning-based person Re-IDentification (ReID) often requires a large amount of training data to achieve good performance.
It appears that collecting more training data from diverse environments tends to improve the ReID performance.
We propose an approach called Domain-Camera-Sample Dynamic network (DCSD) whose parameters can be adaptive to various factors.
arXiv Detail & Related papers (2022-01-06T09:20:59Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - WILDS: A Benchmark of in-the-Wild Distribution Shifts [157.53410583509924]
Distribution shifts can substantially degrade the accuracy of machine learning systems deployed in the wild.
We present WILDS, a curated collection of 8 benchmark datasets that reflect a diverse range of distribution shifts.
We show that standard training results in substantially lower out-of-distribution than in-distribution performance.
arXiv Detail & Related papers (2020-12-14T11:14:56Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Robust Federated Learning: The Case of Affine Distribution Shifts [41.27887358989414]
We develop a robust federated learning algorithm that achieves satisfactory performance against distribution shifts in users' samples.
We show that an affine distribution shift indeed suffices to significantly decrease the performance of the learnt classifier in a new test user.
arXiv Detail & Related papers (2020-06-16T03:43:59Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Reinforced Data Sampling for Model Diversification [15.547681142342846]
This paper proposes a new Reinforced Data Sampling (RDS) method to learn how to sample data adequately.
We formulate the optimisation problem of model diversification $delta-div$ in data sampling to maximise learning potentials and optimum allocation by injecting model diversity.
Our results suggest that the trainable sampling for model diversification is useful for competition organisers, researchers, or even starters to pursue full potentials of various machine learning tasks.
arXiv Detail & Related papers (2020-06-12T11:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.