Neural-g: A Deep Learning Framework for Mixing Density Estimation
- URL: http://arxiv.org/abs/2406.05986v1
- Date: Mon, 10 Jun 2024 03:00:28 GMT
- Title: Neural-g: A Deep Learning Framework for Mixing Density Estimation
- Authors: Shijie Wang, Saptarshi Chakraborty, Qian Qin, Ray Bai,
- Abstract summary: Mixing (or prior) density estimation is an important problem in machine learning and statistics.
We propose neural-$g$, a new neural network-based estimator for $g$-modeling.
- Score: 16.464806944964003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixing (or prior) density estimation is an important problem in machine learning and statistics, especially in empirical Bayes $g$-modeling where accurately estimating the prior is necessary for making good posterior inferences. In this paper, we propose neural-$g$, a new neural network-based estimator for $g$-modeling. Neural-$g$ uses a softmax output layer to ensure that the estimated prior is a valid probability density. Under default hyperparameters, we show that neural-$g$ is very flexible and capable of capturing many unknown densities, including those with flat regions, heavy tails, and/or discontinuities. In contrast, existing methods struggle to capture all of these prior shapes. We provide justification for neural-$g$ by establishing a new universal approximation theorem regarding the capability of neural networks to learn arbitrary probability mass functions. To accelerate convergence of our numerical implementation, we utilize a weighted average gradient descent approach to update the network parameters. Finally, we extend neural-$g$ to multivariate prior density estimation. We illustrate the efficacy of our approach through simulations and analyses of real datasets. A software package to implement neural-$g$ is publicly available at https://github.com/shijiew97/neuralG.
Related papers
- Fast, Distribution-free Predictive Inference for Neural Networks with
Coverage Guarantees [25.798057062452443]
This paper introduces a novel, computationally-efficient algorithm for predictive inference (PI)
It requires no distributional assumptions on the data and can be computed faster than existing bootstrap-type methods for neural networks.
arXiv Detail & Related papers (2023-06-11T04:03:58Z) - Normalization effects on deep neural networks [20.48472873675696]
We study the effect of the choice of the $gamma_i$ on the statistical behavior of the neural network's output.
We find that in terms of variance of the neural network's output and test accuracy the best choice is to choose the $gamma_i$s to be equal to one.
arXiv Detail & Related papers (2022-09-02T17:05:55Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
This paper proposes a theoretical and computational framework for training and robustness verification of implicit neural networks.
We introduce a related embedded network and show that the embedded network can be used to provide an $ell_infty$-norm box over-approximation of the reachable sets of the original network.
We apply our algorithms to train implicit neural networks on the MNIST dataset and compare the robustness of our models with the models trained via existing approaches in the literature.
arXiv Detail & Related papers (2022-08-08T03:13:24Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Does Preprocessing Help Training Over-parameterized Neural Networks? [19.64638346701198]
We propose two novel preprocessing ideas to bypass the $Omega(mnd)$ barrier.
Our results provide theoretical insights for a large number of previously established fast training methods.
arXiv Detail & Related papers (2021-10-09T18:16:23Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
We show that a class of variation-constrained neural networks can achieve near-parametric rate $n-1/2+delta$ for an arbitrarily small constant $delta$.
The result indicates that the neural function space needed for approximating smooth functions may not be as large as what is often perceived.
arXiv Detail & Related papers (2021-06-22T21:28:00Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
We propose an efficient neural network design for estimating measurement error models.
We use a fully connected feed-forward neural network to approximate the regression function $f(x)$.
We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods.
arXiv Detail & Related papers (2020-07-15T06:05:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.