Discovering Multiple Solutions from a Single Task in Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2406.05993v1
- Date: Mon, 10 Jun 2024 03:25:49 GMT
- Title: Discovering Multiple Solutions from a Single Task in Offline Reinforcement Learning
- Authors: Takayuki Osa, Tatsuya Harada,
- Abstract summary: We propose an algorithm that learns multiple solutions from a single task in offline reinforcement learning.
Our experimental results show that the proposed algorithm learns multiple qualitatively and quantitatively distinctive solutions in offline RL.
- Score: 51.00472376469131
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent studies on online reinforcement learning (RL) have demonstrated the advantages of learning multiple behaviors from a single task, as in the case of few-shot adaptation to a new environment. Although this approach is expected to yield similar benefits in offline RL, appropriate methods for learning multiple solutions have not been fully investigated in previous studies. In this study, we therefore addressed the problem of finding multiple solutions from a single task in offline RL. We propose algorithms that can learn multiple solutions in offline RL, and empirically investigate their performance. Our experimental results show that the proposed algorithm learns multiple qualitatively and quantitatively distinctive solutions in offline RL.
Related papers
- Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage [32.578787778183546]
offline reinforcement learning (RL) algorithms learn optimal polices using historical (offline) data.
One of the main challenges in offline RL is the distribution shift.
We propose two offline RL algorithms using the distributionally robust learning (DRL) framework.
arXiv Detail & Related papers (2023-10-27T19:19:30Z) - Understanding the Complexity Gains of Single-Task RL with a Curriculum [83.46923851724408]
Reinforcement learning (RL) problems can be challenging without well-shaped rewards.
We provide a theoretical framework that reformulates a single-task RL problem as a multi-task RL problem defined by a curriculum.
We show that sequentially solving each task in the multi-task RL problem is more computationally efficient than solving the original single-task problem.
arXiv Detail & Related papers (2022-12-24T19:46:47Z) - Ensemble Reinforcement Learning in Continuous Spaces -- A Hierarchical
Multi-Step Approach for Policy Training [4.982806898121435]
We propose a new technique to train an ensemble of base learners based on an innovative multi-step integration method.
This training technique enables us to develop a new hierarchical learning algorithm for ensemble DRL that effectively promotes inter-learner collaboration.
The algorithm is also shown empirically to outperform several state-of-the-art DRL algorithms on multiple benchmark RL problems.
arXiv Detail & Related papers (2022-09-29T00:42:44Z) - Importance of Empirical Sample Complexity Analysis for Offline
Reinforcement Learning [55.90351453865001]
We ask the question of the dependency on the number of samples for learning from offline data.
Our objective is to emphasize that studying sample complexity for offline RL is important, and is an indicator of the usefulness of existing offline algorithms.
arXiv Detail & Related papers (2021-12-31T18:05:33Z) - Pessimistic Model Selection for Offline Deep Reinforcement Learning [56.282483586473816]
Deep Reinforcement Learning (DRL) has demonstrated great potentials in solving sequential decision making problems in many applications.
One main barrier is the over-fitting issue that leads to poor generalizability of the policy learned by DRL.
We propose a pessimistic model selection (PMS) approach for offline DRL with a theoretical guarantee.
arXiv Detail & Related papers (2021-11-29T06:29:49Z) - Conservative Data Sharing for Multi-Task Offline Reinforcement Learning [119.85598717477016]
We argue that a natural use case of offline RL is in settings where we can pool large amounts of data collected in various scenarios for solving different tasks.
We develop a simple technique for data-sharing in multi-task offline RL that routes data based on the improvement over the task-specific data.
arXiv Detail & Related papers (2021-09-16T17:34:06Z) - Discovering Diverse Solutions in Deep Reinforcement Learning [84.45686627019408]
Reinforcement learning algorithms are typically limited to learning a single solution of a specified task.
We propose an RL method that can learn infinitely many solutions by training a policy conditioned on a continuous or discrete low-dimensional latent variable.
arXiv Detail & Related papers (2021-03-12T04:54:31Z) - Reinforcement Learning for Combinatorial Optimization: A Survey [12.323976053967066]
Many traditional algorithms for solving optimization problems involve using hand-crafteds that sequentially construct a solution.
Reinforcement learning (RL) proposes a good alternative to automate the search of theses by training an agent in a supervised or self-supervised manner.
arXiv Detail & Related papers (2020-03-07T16:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.