論文の概要: Lurking in the shadows: Unveiling Stealthy Backdoor Attacks against Personalized Federated Learning
- arxiv url: http://arxiv.org/abs/2406.06207v1
- Date: Mon, 10 Jun 2024 12:14:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 14:07:44.227876
- Title: Lurking in the shadows: Unveiling Stealthy Backdoor Attacks against Personalized Federated Learning
- Title(参考訳): 陰に潜む:個人化されたフェデレーションラーニングに対する頑固なバックドア攻撃を解き明かす
- Authors: Xiaoting Lyu, Yufei Han, Wei Wang, Jingkai Liu, Yongsheng Zhu, Guangquan Xu, Jiqiang Liu, Xiangliang Zhang,
- Abstract要約: PFLシステムに適用可能なステルスで効果的なバックドア攻撃戦略である textitPFedBA を提案する。
我々の研究は、PFLシステムに対する微妙ながら強力なバックドアの脅威に光を当て、新たなバックドアの課題に対する防衛を強化するようコミュニティに促している。
- 参考スコア(独自算出の注目度): 31.386836775526685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a collaborative machine learning technique where multiple clients work together with a central server to train a global model without sharing their private data. However, the distribution shift across non-IID datasets of clients poses a challenge to this one-model-fits-all method hindering the ability of the global model to effectively adapt to each client's unique local data. To echo this challenge, personalized FL (PFL) is designed to allow each client to create personalized local models tailored to their private data. While extensive research has scrutinized backdoor risks in FL, it has remained underexplored in PFL applications. In this study, we delve deep into the vulnerabilities of PFL to backdoor attacks. Our analysis showcases a tale of two cities. On the one hand, the personalization process in PFL can dilute the backdoor poisoning effects injected into the personalized local models. Furthermore, PFL systems can also deploy both server-end and client-end defense mechanisms to strengthen the barrier against backdoor attacks. On the other hand, our study shows that PFL fortified with these defense methods may offer a false sense of security. We propose \textit{PFedBA}, a stealthy and effective backdoor attack strategy applicable to PFL systems. \textit{PFedBA} ingeniously aligns the backdoor learning task with the main learning task of PFL by optimizing the trigger generation process. Our comprehensive experiments demonstrate the effectiveness of \textit{PFedBA} in seamlessly embedding triggers into personalized local models. \textit{PFedBA} yields outstanding attack performance across 10 state-of-the-art PFL algorithms, defeating the existing 6 defense mechanisms. Our study sheds light on the subtle yet potent backdoor threats to PFL systems, urging the community to bolster defenses against emerging backdoor challenges.
- Abstract(参考訳): Federated Learning(FL)は、複数のクライアントが中央サーバと連携して、プライベートデータを共有せずにグローバルモデルをトレーニングする、コラボレーティブな機械学習技術である。
しかし、クライアントの非IIDデータセット間の分散シフトは、グローバルモデルが各クライアントのユニークなローカルデータに効果的に適応する能力を阻害するこの1モデルフィットの手法に挑戦する。
この課題を反映するために、パーソナライズされたFL(PFL)は、各クライアントがプライベートデータに合わせてパーソナライズされたローカルモデルを作成するように設計されている。
FLのバックドアリスクは広範囲に調査されているが、PFLの応用では未調査のままである。
本研究では,バックドア攻撃に対するPFLの脆弱性を深く掘り下げる。
私たちの分析は2つの都市の物語を示している。
一方、PFLのパーソナライズプロセスは、パーソナライズされたローカルモデルに注入されたバックドア中毒効果を減弱することができる。
さらに、PFLシステムはサーバエンドとクライアントエンドの両方の防御機構を展開でき、バックドア攻撃に対する障壁を強化することができる。
一方,本研究は,これらの防御法で強化されたPFLが,セキュリティの誤った感覚を与える可能性を示唆している。
PFLシステムに適用可能なステルスで効果的なバックドア攻撃戦略である「textit{PFedBA}」を提案する。
\textit{PFedBA}は、トリガ生成プロセスを最適化することにより、バックドア学習タスクをPFLのメイン学習タスクと巧みに整合させる。
我々の総合的な実験は、パーソナライズされたローカルモデルにシームレスにトリガを埋め込む方法における \textit{PFedBA} の有効性を実証した。
\textit{PFedBA} は10の最先端のPFLアルゴリズムに対して優れた攻撃性能を示し、既存の6つの防御機構を破る。
我々の研究は、PFLシステムに対する微妙ながら強力なバックドアの脅威に光を当て、新たなバックドアの課題に対する防衛を強化するようコミュニティに促している。
関連論文リスト
- BadSFL: Backdoor Attack against Scaffold Federated Learning [16.104941796138128]
フェデレートラーニング(FL)は、分散クライアント上のディープラーニングモデルのトレーニングにより、データのプライバシを保護します。
BadSFLは、非IID環境での足場集約アルゴリズムを用いて、FLフレームワーク用に設計された新しいバックドアアタック手法である。
BadSFLは、グローバルモデルで60ラウンド以上有効であり、既存のベースライン攻撃の最大3倍の長さである。
論文 参考訳(メタデータ) (2024-11-25T07:46:57Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
フェデレートされた自己教師付き学習(FSSL)は、クライアントの膨大な量の未ラベルデータの利用を可能にする、有望なパラダイムとして登場した。
FSSLはアドバンテージを提供するが、バックドア攻撃に対する感受性は調査されていない。
ローカルモデルの埋め込み空間を検査し,悪意のあるクライアントを検知する埋め込み検査器(EmInspector)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:14:49Z) - Universal Adversarial Backdoor Attacks to Fool Vertical Federated
Learning in Cloud-Edge Collaboration [13.067285306737675]
本稿では,二元分類タスクの文脈における垂直連合学習(VFL)の脆弱性について検討する。
VFLの予測に悪影響を及ぼすため,UAB攻撃を導入した。
我々の手法は既存の最先端の手法を超越し、最大100%のバックドアタスク性能を実現している。
論文 参考訳(メタデータ) (2023-04-22T15:31:15Z) - Backdoor Attacks and Defenses in Federated Learning: Survey, Challenges
and Future Research Directions [3.6086478979425998]
Federated Learning(FL)は、個人のプライバシを損なうことなく分散データを使用することが可能な機械学習(ML)アプローチである。
FLにおけるクライアント間のデータの均一な分散は、オーケストレーションサーバがローカルモデル更新の完全性を検証するのを難しくする。
バックドア攻撃では、悪意のあるクライアントからの悪意のあるアップデートを通じて、悪意のある機能をターゲットモデルに挿入する。
論文 参考訳(メタデータ) (2023-03-03T20:54:28Z) - Revisiting Personalized Federated Learning: Robustness Against Backdoor
Attacks [53.81129518924231]
pFLフレームワークにおけるバックドア攻撃の最初の研究を行う。
モデル共有部分を持つpFL法は,バックドア攻撃に対するロバスト性を大幅に向上させることができることを示す。
本稿では,バックドア攻撃に対する防御性能を実証的に向上する軽量防御手法Simple-Tuningを提案する。
論文 参考訳(メタデータ) (2023-02-03T11:58:14Z) - Backdoor Attacks in Peer-to-Peer Federated Learning [11.235386862864397]
Peer-to-Peer Federated Learning (P2PFL)は、プライバシと信頼性の両面でアドバンテージを提供する。
本稿では,P2PFLに対する新たなバックドア攻撃を提案する。
論文 参考訳(メタデータ) (2023-01-23T21:49:28Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Achieving Personalized Federated Learning with Sparse Local Models [75.76854544460981]
フェデレートラーニング(FL)は異種分散データに対して脆弱である。
この問題に対処するため、個人ごとに専用のローカルモデルを作成するためにパーソナライズされたFL(PFL)が提案された。
既存のPFLソリューションは、異なるモデルアーキテクチャに対する不満足な一般化を示すか、あるいは膨大な余分な計算とメモリを犠牲にするかのどちらかである。
我々は、パーソナライズされたスパースマスクを用いて、エッジ上のスパースローカルモデルをカスタマイズする新しいPFLスキームFedSpaを提案する。
論文 参考訳(メタデータ) (2022-01-27T08:43:11Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
本稿では,第1の汎用フレームワークであるCertifiably Robust Federated Learning (CRFL) を用いて,バックドアに対する堅牢なFLモデルをトレーニングする。
提案手法は, モデルパラメータのクリッピングと平滑化を利用して大域的モデル平滑化を制御する。
論文 参考訳(メタデータ) (2021-06-15T16:50:54Z) - Meta Federated Learning [57.52103907134841]
フェデレートラーニング(FL)は、時間的敵攻撃の訓練に弱い。
本稿では,メタフェデレーション学習(Meta Federated Learning, Meta-FL)を提案する。
論文 参考訳(メタデータ) (2021-02-10T16:48:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。