論文の概要: PAC-Bayes Analysis for Recalibration in Classification
- arxiv url: http://arxiv.org/abs/2406.06227v1
- Date: Mon, 10 Jun 2024 12:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:58:00.159806
- Title: PAC-Bayes Analysis for Recalibration in Classification
- Title(参考訳): 分類における再校正のためのPACベイズ解析
- Authors: Masahiro Fujisawa, Futoshi Futami,
- Abstract要約: 我々は,大まかに正しい(PAC)ベイズフレームワークの下でキャリブレーション誤差の一般化解析を行う。
次に,一般化理論に基づく一般化対応再校正アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 4.005483185111992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonparametric estimation with binning is widely employed in the calibration error evaluation and the recalibration of machine learning models. Recently, theoretical analyses of the bias induced by this estimation approach have been actively pursued; however, the understanding of the generalization of the calibration error to unknown data remains limited. In addition, although many recalibration algorithms have been proposed, their generalization performance lacks theoretical guarantees. To address this problem, we conduct a generalization analysis of the calibration error under the probably approximately correct (PAC) Bayes framework. This approach enables us to derive a first optimizable upper bound for the generalization error in the calibration context. We then propose a generalization-aware recalibration algorithm based on our generalization theory. Numerical experiments show that our algorithm improves the Gaussian-process-based recalibration performance on various benchmark datasets and models.
- Abstract(参考訳): ビンニングによる非パラメトリック推定は、機械学習モデルの校正誤差評価と再校正に広く用いられている。
近年, この推定手法によるバイアスの理論的解析が盛んに行われているが, キャリブレーション誤差の未知データへの一般化の理解は依然として限られている。
また、多くの再校正アルゴリズムが提案されているが、その一般化性能には理論的保証がない。
この問題に対処するため、我々は、おそらくほぼ正しい(PAC)ベイズフレームワークの下でキャリブレーション誤差の一般化解析を行う。
このアプローチにより、キャリブレーションコンテキストにおける一般化誤差に対して、第1の最適化可能な上限を導出できる。
次に,一般化理論に基づく一般化対応再校正アルゴリズムを提案する。
数値実験により,提案アルゴリズムはガウス過程に基づく様々なベンチマークデータセットやモデル上での校正性能を向上させることが示された。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Estimating Generalization Performance Along the Trajectory of Proximal SGD in Robust Regression [4.150180443030652]
本稿では,反復アルゴリズムの軌道に沿った反復の一般化誤差を正確に追跡する推定器を提案する。
結果は、ハマー回帰(英語版)、擬ハマー回帰(英語版)、および非滑らかな正則化子を持つそれらのペナル化変種(英語版)など、いくつかの例を通して説明される。
論文 参考訳(メタデータ) (2024-10-03T16:13:42Z) - A naive aggregation algorithm for improving generalization in a class of learning problems [0.0]
本稿では,エキスパート・アドバイス・セッティングを用いた一般的な学習問題に対するナイーブ・アグリゲーション・アルゴリズムを提案する。
特に,高次元非線形関数をモデル化するための点推定の学習問題について考察する。
論文 参考訳(メタデータ) (2024-09-06T15:34:17Z) - Orthogonal Causal Calibration [55.28164682911196]
我々は、任意の損失$ell$に対して、任意の因果パラメータのキャリブレーション誤差$theta$の一般的な上限を証明した。
我々は、因果校正のための2つのサンプル分割アルゴリズムの収束解析に境界を用いる。
論文 参考訳(メタデータ) (2024-06-04T03:35:25Z) - Information-theoretic Generalization Analysis for Expected Calibration Error [4.005483185111992]
本研究は,2つの共通ビンニング戦略,一様質量と一様幅ビンニングにおける推定バイアスの最初の包括的解析である。
私たちの境界は、推定バイアスを最小限に抑えるために、初めて最適なビンの数を明らかにします。
バイアス分析を情報理論に基づく一般化誤差解析に拡張する。
論文 参考訳(メタデータ) (2024-05-24T16:59:29Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Towards Data-Algorithm Dependent Generalization: a Case Study on
Overparameterized Linear Regression [19.047997113063147]
本稿では,データ依存学習軌跡全体の一般化挙動を考察したデータ-アルゴリズム整合性の概念を提案する。
我々は、データ依存軌道解析を行い、そのような環境での互換性に十分な条件を導出する。
論文 参考訳(メタデータ) (2022-02-12T12:42:36Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
不確実性定量のための回帰における予測間隔の生成について検討する。
我々は一般学習理論を用いて、リプシッツ連続性とVC-サブグラフクラスを含む最適性と実現可能性のトレードオフを特徴づける。
我々は既存のベンチマークと比べてテスト性能の点で、区間生成とキャリブレーションアルゴリズムの強みを実証的に示している。
論文 参考訳(メタデータ) (2021-02-26T17:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。