論文の概要: Optimisation of federated learning settings under statistical heterogeneity variations
- arxiv url: http://arxiv.org/abs/2406.06340v1
- Date: Mon, 10 Jun 2024 15:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 13:38:29.278785
- Title: Optimisation of federated learning settings under statistical heterogeneity variations
- Title(参考訳): 統計的不均一性変動下におけるフェデレーション学習設定の最適化
- Authors: Basem Suleiman, Muhammad Johan Alibasa, Rizka Widyarini Purwanto, Lewis Jeffries, Ali Anaissi, Jacky Song,
- Abstract要約: フェデレートラーニング(FL)は、中央アグリゲータと定期的にモデルパラメータを共有することで、ローカルデバイスが共有予測モデルを協調的に学習することを可能にする。
本稿では,3つのデータセット上での様々な統計的不均一性について,異なるFLトレーニングパラメータとアグリゲータの実証分析を行った。
異なる特徴を持つデータセットに対する最良のFLモデルと鍵パラメータを実証的に同定する。
- 参考スコア(独自算出の注目度): 0.7801184127091986
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) enables local devices to collaboratively learn a shared predictive model by only periodically sharing model parameters with a central aggregator. However, FL can be disadvantaged by statistical heterogeneity produced by the diversity in each local devices data distribution, which creates different levels of Independent and Identically Distributed (IID) data. Furthermore, this can be more complex when optimising different combinations of FL parameters and choosing optimal aggregation. In this paper, we present an empirical analysis of different FL training parameters and aggregators over various levels of statistical heterogeneity on three datasets. We propose a systematic data partition strategy to simulate different levels of statistical heterogeneity and a metric to measure the level of IID. Additionally, we empirically identify the best FL model and key parameters for datasets of different characteristics. On the basis of these, we present recommended guidelines for FL parameters and aggregators to optimise model performance under different levels of IID and with different datasets
- Abstract(参考訳): フェデレートラーニング(FL)は、中央アグリゲータと定期的にモデルパラメータを共有することで、ローカルデバイスが共有予測モデルを協調的に学習することを可能にする。
しかし、FLは各ローカルデバイスデータ分布の多様性によって生成される統計的不均一性により不均一になり、独立性および独立性(IID)データのレベルが異なる。
さらに、FLパラメータの異なる組み合わせを最適化し、最適なアグリゲーションを選択すると、これはさらに複雑になる。
本稿では,3つのデータセット上での統計的不均一性の異なるFLトレーニングパラメータとアグリゲータについて,実験的検討を行った。
統計的不均一性の異なるレベルをシミュレートするための体系的なデータ分割戦略と、IDDのレベルを測定するための指標を提案する。
さらに,異なる特徴を持つデータセットに対して,最適なFLモデルと鍵パラメータを実証的に同定する。
これらに基づいて、異なるIDレベルと異なるデータセットでモデル性能を最適化するためのFLパラメータとアグリゲータの推奨ガイドラインを提案する。
関連論文リスト
- Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Towards a Unified Theory for Semiparametric Data Fusion with Individual-Level Data [1.0650780147044159]
本研究では,様々な独立した情報源からの個人レベルのデータを活用することで,滑らかな有限次元パラメータに関する推論を行うという目的に対処する。
近年の進歩により、異なるデータソースが結合対象分布の単一因数分解の条件分布の、おそらくは別個のサブセットと整合するシナリオを扱うことができる包括的理論が発展してきた。
我々は、上記の包括的理論を拡張し、対象分布の単一因数分解に対応しない条件分布に整合したソースからの個々のレベルデータの融合を可能にする。
論文 参考訳(メタデータ) (2024-09-16T04:10:44Z) - DynamicFL: Federated Learning with Dynamic Communication Resource Allocation [34.97472382870816]
Federated Learning(FL)は、複数のユーザがローカルデータを使ってモデルを分散的にトレーニングできる、協調的な機械学習フレームワークである。
我々は,グローバルモデルの性能と通信コストのトレードオフを調査する新しいFLフレームワークであるDynamicFLを紹介する。
モデル精度は最大10%向上し,DynamicFLは最先端の手法を超越していることを示す。
論文 参考訳(メタデータ) (2024-09-08T05:53:32Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
本稿では,乗算器の交互方向法(ADMM)を利用して,パーソナライズおよびグローバルモデルの学習を行う最適化フレームワークFLAMEを提案する。
我々の理論的解析は、軽度の仮定の下で、FLAMEのグローバル収束と2種類の収束速度を確立する。
実験の結果,FLAMEは収束と精度において最先端の手法より優れており,各種攻撃下では高い精度を達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-23T11:35:42Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated Learning(FL)は、独立した学習者がデータをプライベートに処理する分散機械学習アプローチである。
現在普及しているデータ分割技術について検討し、その主な欠点を可視化する。
エントロピーと対称性を利用して「最も困難」かつ制御可能なデータ分布を構築する手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:39:08Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
パーソナライズドラーニング(PFL)のための新しいGAN(Generative Adversarial Network)の共有と集約戦略を提案する。
PFL-GANは、異なるシナリオにおけるクライアントの不均一性に対処する。より具体的には、まずクライアント間の類似性を学び、次に重み付けされた協調データアグリゲーションを開発する。
いくつかのよく知られたデータセットに対する厳密な実験による実験結果は、PFL-GANの有効性を示している。
論文 参考訳(メタデータ) (2023-08-23T22:38:35Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
フェデレートラーニング(FL)は、複数の参加者が生データを共有せずに学習をコラボレーションするための分散ラーニングフレームワークを提供する。
本稿では, モデルサイズとロバスト性をその場でカスタマイズできる, 不均一な参加者のための新しいスプリット・ミクス・FL戦略を提案する。
論文 参考訳(メタデータ) (2022-03-18T04:58:34Z) - Multi-Center Federated Learning [62.32725938999433]
フェデレートラーニング(FL)は、分散ラーニングにおけるデータのプライバシを保護する。
単にデータにアクセスせずに、ユーザーからローカルな勾配を収集するだけだ。
本稿では,新しいマルチセンターアグリゲーション機構を提案する。
論文 参考訳(メタデータ) (2021-08-19T12:20:31Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。