Generalizing to Unseen Domains in Diabetic Retinopathy with Disentangled Representations
- URL: http://arxiv.org/abs/2406.06384v1
- Date: Mon, 10 Jun 2024 15:43:56 GMT
- Title: Generalizing to Unseen Domains in Diabetic Retinopathy with Disentangled Representations
- Authors: Peng Xia, Ming Hu, Feilong Tang, Wenxue Li, Wenhao Zheng, Lie Ju, Peibo Duan, Huaxiu Yao, Zongyuan Ge,
- Abstract summary: Existing models experience notable performance degradation on unseen domains due to domain shifts.
We propose a novel framework where representations of paired data from different domains are decoupled into semantic features and domain noise.
The resulting augmented representation comprises original retinal semantics and domain noise from other domains, aiming to generate enhanced representations aligned with real-world clinical needs.
- Score: 32.7667209371645
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diabetic Retinopathy (DR), induced by diabetes, poses a significant risk of visual impairment. Accurate and effective grading of DR aids in the treatment of this condition. Yet existing models experience notable performance degradation on unseen domains due to domain shifts. Previous methods address this issue by simulating domain style through simple visual transformation and mitigating domain noise via learning robust representations. However, domain shifts encompass more than image styles. They overlook biases caused by implicit factors such as ethnicity, age, and diagnostic criteria. In our work, we propose a novel framework where representations of paired data from different domains are decoupled into semantic features and domain noise. The resulting augmented representation comprises original retinal semantics and domain noise from other domains, aiming to generate enhanced representations aligned with real-world clinical needs, incorporating rich information from diverse domains. Subsequently, to improve the robustness of the decoupled representations, class and domain prototypes are employed to interpolate the disentangled representations while data-aware weights are designed to focus on rare classes and domains. Finally, we devise a robust pixel-level semantic alignment loss to align retinal semantics decoupled from features, maintaining a balance between intra-class diversity and dense class features. Experimental results on multiple benchmarks demonstrate the effectiveness of our method on unseen domains. The code implementations are accessible on https://github.com/richard-peng-xia/DECO.
Related papers
- Cross-Domain Policy Adaptation by Capturing Representation Mismatch [53.087413751430255]
It is vital to learn effective policies that can be transferred to different domains with dynamics discrepancies in reinforcement learning (RL)
In this paper, we consider dynamics adaptation settings where there exists dynamics mismatch between the source domain and the target domain.
We perform representation learning only in the target domain and measure the representation deviations on the transitions from the source domain.
arXiv Detail & Related papers (2024-05-24T09:06:12Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
Face recognition models often degenerate when training data are different from testing data.
We propose a novel adversarial information network (AIN) to address it.
arXiv Detail & Related papers (2023-05-23T02:14:11Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Contrastive Domain Disentanglement for Generalizable Medical Image
Segmentation [12.863227646939563]
We propose Contrastive Disentangle Domain (CDD) network for generalizable medical image segmentation.
We first introduce a disentangle network to decompose medical images into an anatomical representation factor and a modality representation factor.
We then propose a domain augmentation strategy that can randomly generate new domains for model generalization training.
arXiv Detail & Related papers (2022-05-13T10:32:41Z) - Unsupervised Domain Adaptation with Semantic Consistency across
Heterogeneous Modalities for MRI Prostate Lesion Segmentation [19.126306953075275]
We introduce two new loss functions that promote semantic consistency.
In particular, we address the challenge of enhancing performance on VERDICT-MRI, an advanced diffusion-weighted imaging technique.
arXiv Detail & Related papers (2021-09-19T17:33:26Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions.
It can be shown that our approach outperforms existing domain strategies.
arXiv Detail & Related papers (2021-07-20T09:44:07Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
We propose a vessel-mixing based consistency regularization framework, for cross-domain learning in retinal A/V classification.
Our method achieves the state-of-the-art cross-domain performance, which is also close to the upper bound obtained by fully supervised learning on target domain.
arXiv Detail & Related papers (2021-03-16T14:18:35Z) - Unsupervised Domain Adaptation Network with Category-Centric Prototype
Aligner for Biomedical Image Segmentation [1.1799563040751586]
We present a novel unsupervised domain adaptation network for generalizing models learned from the labeled source domain to the unlabeled target domain.
Specifically, our approach consists of two key modules, a conditional domain discriminator(CDD) and a category-centric prototype aligner(CCPA)
arXiv Detail & Related papers (2021-03-03T07:07:38Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.