論文の概要: Explainable Graph Neural Networks Under Fire
- arxiv url: http://arxiv.org/abs/2406.06417v2
- Date: Fri, 18 Oct 2024 05:03:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:00.961306
- Title: Explainable Graph Neural Networks Under Fire
- Title(参考訳): 火の下の説明可能なグラフニューラルネットワーク
- Authors: Zhong Li, Simon Geisler, Yuhang Wang, Stephan Günnemann, Matthijs van Leeuwen,
- Abstract要約: グラフニューラルネットワーク(GNN)は通常、複雑な計算挙動とグラフの抽象的性質のために解釈性に欠ける。
ほとんどのGNN説明法は、ポストホックな方法で動作し、重要なエッジと/またはノードの小さなサブセットの形で説明を提供する。
本稿では,これらの説明が信頼できないことを実証する。GNNの一般的な説明手法は,敵対的摂動に強い影響を受けやすいことが判明した。
- 参考スコア(独自算出の注目度): 69.15708723429307
- License:
- Abstract: Predictions made by graph neural networks (GNNs) usually lack interpretability due to their complex computational behavior and the abstract nature of graphs. In an attempt to tackle this, many GNN explanation methods have emerged. Their goal is to explain a model's predictions and thereby obtain trust when GNN models are deployed in decision critical applications. Most GNN explanation methods work in a post-hoc manner and provide explanations in the form of a small subset of important edges and/or nodes. In this paper we demonstrate that these explanations can unfortunately not be trusted, as common GNN explanation methods turn out to be highly susceptible to adversarial perturbations. That is, even small perturbations of the original graph structure that preserve the model's predictions may yield drastically different explanations. This calls into question the trustworthiness and practical utility of post-hoc explanation methods for GNNs. To be able to attack GNN explanation models, we devise a novel attack method dubbed \textit{GXAttack}, the first \textit{optimization-based} adversarial white-box attack method for post-hoc GNN explanations under such settings. Due to the devastating effectiveness of our attack, we call for an adversarial evaluation of future GNN explainers to demonstrate their robustness. For reproducibility, our code is available via GitHub.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)による予測は、その複雑な計算挙動とグラフの抽象的性質のために解釈性に欠ける。
これを解決するために、多くのGNN説明手法が登場した。
彼らの目標は、モデルの予測を説明し、GNNモデルが決定クリティカルなアプリケーションにデプロイされたときに信頼を得ることである。
ほとんどのGNN説明法は、ポストホックな方法で動作し、重要なエッジと/またはノードの小さなサブセットの形で説明を提供する。
本稿では、GNNの一般的な説明手法が、敵の摂動に強い影響を受けやすいことが判明したため、これらの説明は残念ながら信用できないことを実証する。
つまり、モデルの予測を保存する元のグラフ構造の小さな摂動でさえ、劇的に異なる説明をもたらす可能性がある。
これは、GNNのポストホックな説明手法の信頼性と実用性に疑問を投げかけるものである。
GNN説明モデルに対する攻撃を可能にするために、このような設定下でのポストホックなGNN説明に対する最初のtextit{GXAttack} 攻撃法である \textit{GXAttack} を考案した。
攻撃の破壊的効果のため,今後のGNN解説者の敵意評価を要請し,その堅牢性を実証する。
再現性のために、私たちのコードはGitHubから入手可能です。
関連論文リスト
- Global Graph Counterfactual Explanation: A Subgraph Mapping Approach [54.42907350881448]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションに広くデプロイされている。
対実的説明は、GNN予測を変える入力グラフ上で最小の摂動を見つけることを目的としている。
我々は,グローバルレベルのグラフ対実的説明法であるGlobalGCEを提案する。
論文 参考訳(メタデータ) (2024-10-25T21:39:05Z) - Graph Neural Network Explanations are Fragile [39.9987140075811]
我々は、敵の攻撃下でGNNの説明者を研究するための第一歩を踏み出した。
逆の摂動グラフ構造は、GNNモデルが正しい予測を行うのを確実にするが、GNN説明器は摂動グラフに大きく異なる説明を与える。
論文 参考訳(メタデータ) (2024-06-05T12:23:02Z) - Incorporating Retrieval-based Causal Learning with Information
Bottlenecks for Interpretable Graph Neural Networks [12.892400744247565]
我々は,検索に基づく因果学習をグラフ情報ボットネック(GIB)理論に組み込んだ,解釈可能な因果GNNフレームワークを開発した。
多様な説明型を持つ実世界の説明シナリオにおいて,32.71%の精度を達成する。
論文 参考訳(メタデータ) (2024-02-07T09:57:39Z) - On Consistency in Graph Neural Network Interpretation [34.25952902469481]
インスタンスレベルのGNN説明は、ターゲットのGNNが予測に頼っているノードやエッジなどの重要な入力要素を発見することを目的としている。
様々なアルゴリズムが提案されているが、その多くは最小の部分グラフを探索することによってこのタスクを定式化している。
埋め込みの整列による簡易かつ効果的な対策を提案する。
論文 参考訳(メタデータ) (2022-05-27T02:58:07Z) - Bandits for Structure Perturbation-based Black-box Attacks to Graph
Neural Networks with Theoretical Guarantees [60.61846004535707]
グラフニューラルネットワーク(GNN)は多くのグラフベースのタスクで最先端のパフォーマンスを達成した。
攻撃者はグラフ構造をわずかに摂動させることでGNNモデルを誤解させることができる。
本稿では,構造摂動を伴うGNNに対するブラックボックス攻撃と理論的保証について考察する。
論文 参考訳(メタデータ) (2022-05-07T04:17:25Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - Generative Causal Explanations for Graph Neural Networks [39.60333255875979]
Gemは、さまざまなグラフ学習タスクで任意のGNNに対して解釈可能な説明を提供するモデルに依存しないアプローチです。
説明精度の相対的な向上を最大30%$で達成し、その最先端の代替品と比較して、説明プロセスを最大$ 10times $でスピードアップします。
論文 参考訳(メタデータ) (2021-04-14T06:22:21Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。