論文の概要: Insights from Social Shaping Theory: The Appropriation of Large Language Models in an Undergraduate Programming Course
- arxiv url: http://arxiv.org/abs/2406.06451v1
- Date: Mon, 10 Jun 2024 16:40:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 12:59:23.950829
- Title: Insights from Social Shaping Theory: The Appropriation of Large Language Models in an Undergraduate Programming Course
- Title(参考訳): 社会形成理論からの洞察:学部プログラミングコースにおける大規模言語モデルの適用
- Authors: Aadarsh Padiyath, Xinying Hou, Amy Pang, Diego Viramontes Vargas, Xingjian Gu, Tamara Nelson-Fromm, Zihan Wu, Mark Guzdial, Barbara Ericson,
- Abstract要約: 大規模言語モデル(LLM)は、コードを生成、デバッグ、説明することができる。
本研究は,学生の社会的知覚が自身のLLM利用にどのように影響するかを考察する。
- 参考スコア(独自算出の注目度): 0.9718746651638346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The capability of large language models (LLMs) to generate, debug, and explain code has sparked the interest of researchers and educators in undergraduate programming, with many anticipating their transformative potential in programming education. However, decisions about why and how to use LLMs in programming education may involve more than just the assessment of an LLM's technical capabilities. Using the social shaping of technology theory as a guiding framework, our study explores how students' social perceptions influence their own LLM usage. We then examine the correlation of self-reported LLM usage with students' self-efficacy and midterm performances in an undergraduate programming course. Triangulating data from an anonymous end-of-course student survey (n = 158), a mid-course self-efficacy survey (n=158), student interviews (n = 10), self-reported LLM usage on homework, and midterm performances, we discovered that students' use of LLMs was associated with their expectations for their future careers and their perceptions of peer usage. Additionally, early self-reported LLM usage in our context correlated with lower self-efficacy and lower midterm scores, while students' perceived over-reliance on LLMs, rather than their usage itself, correlated with decreased self-efficacy later in the course.
- Abstract(参考訳): 大規模言語モデル(LLM)によるコードの生成、デバッグ、説明能力は、学部プログラミングにおける研究者や教育者の興味を喚起し、多くの人はプログラミング教育におけるその変革的なポテンシャルを期待している。
しかし、プログラミング教育にLLMを使う理由と方法に関する決定は、単にLLMの技術能力を評価することだけに留まらないかもしれない。
本研究は,技術理論の社会的形成を指針として,学生の社会的知覚が自身のLLM利用にどのように影響するかを考察する。
次に,学生の自己効力感と中学期成績と自己申告LDM使用率の相関について検討した。
学生の無名の終末調査(n=158)、中学生の自己効力感調査(n=158)、学生の面接(n=10)、宿題における自己申告LDMの使用状況、中期成績などのデータを三角測量した結果、学生のLSMの使用は将来のキャリアへの期待とピア利用に対する認識と関係があることが判明した。
さらに, 早期自己報告LSM使用状況は, 自己効力低下と中等度低得点に相関し, 学生の自己効力低下は, 自己効力低下と相関した。
関連論文リスト
- Evaluating Language Models for Generating and Judging Programming Feedback [4.743413681603463]
大規模言語モデル(LLM)は、幅広い分野の研究と実践を変革してきた。
我々は,オープンソースのLCMのプログラミング課題に対する高品質なフィードバック生成における効率性を評価する。
論文 参考訳(メタデータ) (2024-07-05T21:44:11Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Analyzing LLM Usage in an Advanced Computing Class in India [4.580708389528142]
本研究では,大規模言語モデル(LLM)を,大学院生や大学院生が高度なコンピューティングクラスにおけるプログラミング課題に活用することを検討した。
インド大学の分散システムクラスから411名の学生を対象に,総合的な分析を行った。
論文 参考訳(メタデータ) (2024-04-06T12:06:56Z) - An Exploratory Study on Upper-Level Computing Students' Use of Large Language Models as Tools in a Semester-Long Project [2.7325338323814328]
本研究の目的は、学期間ソフトウェアエンジニアリングプロジェクトにおいて、計算学生のLSMの使用経験とアプローチを検討することである。
我々はPurdue大学の上級ソフトウェア工学コースからデータを収集した。
本研究では,学生の利用パターンや学習成果に関連するテーマを特定するために,データを分析した。
論文 参考訳(メタデータ) (2024-03-27T15:21:58Z) - Unmemorization in Large Language Models via Self-Distillation and
Deliberate Imagination [58.36408867180233]
大規模言語モデル(LLM)は、プライバシー侵害や機密データの不要な露出といった重要な問題に苦慮している。
我々は、LLMアンラーニングの文脈において、意図的な想像力という新しいアプローチを導入する。
本研究は,異なるモデルとサイズにまたがるこのアプローチの有用性を示し,パラメータ効率の良い微調整を行った。
論文 参考訳(メタデータ) (2024-02-15T16:21:14Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Automated Assessment of Students' Code Comprehension using LLMs [0.3293989832773954]
大規模言語モデル(LLM)とエンコーダベースのセマンティックテキスト類似(STS)モデルを評価する。
この結果から,LLMはプログラミング領域における生徒の短解評価において,微調整エンコーダモデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-19T20:39:12Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
そこで我々は,そのような推論能力をより小さなLMに蒸留する,適切な学習手法を提案する。
対話型多ラウンド学習パラダイムを構築することにより,理科教員としてのLLMの可能性を活用する。
より小さなLMの推論可能性を活用するために,学生が自作ミスから学習する動機付けを目的とした自己回帰学習を提案する。
論文 参考訳(メタデータ) (2023-10-20T07:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。