Rephasing spectral diffusion in time-bin spin-spin entanglement protocols
- URL: http://arxiv.org/abs/2406.06497v2
- Date: Tue, 11 Jun 2024 21:17:25 GMT
- Title: Rephasing spectral diffusion in time-bin spin-spin entanglement protocols
- Authors: Mehmet T. Uysal, Jeff D. Thompson,
- Abstract summary: We introduce a method to correct phase errors from quasi-static frequency fluctuations after the entangled state is generated.
For quasi-static frequency fluctuations, the fidelity is determined only by the lifetime of the excited state used for shelving.
The protocol can be used to generate high-fidelity entangled spin pairs without reducing the rate of entanglement generation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating high fidelity spin-spin entanglement is an essential task of quantum repeater networks for the distribution of quantum information across long distances. Solid-state based spin-photon interfaces are promising candidates to realize nodes of a quantum network, but are often limited by spectral diffusion of the optical transition, which results in phase errors on the entangled states. Here, we introduce a method to correct phase errors from quasi-static frequency fluctuations after the entangled state is generated, by shelving the emitters in the excited state to refocus the unknown phase. For quasi-static frequency fluctuations, the fidelity is determined only by the lifetime of the excited state used for shelving, making it particularly suitable for systems with a long-lived shelving state with correlated spectral diffusion. Such a shelving state may be found in Kramers doublet systems such as rare-earth emitters and color centers in Si or SiC interfaced with nanophotonic cavities with a strongly frequency-dependent Purcell enhancement. The protocol can be used to generate high-fidelity entangled spin pairs without reducing the rate of entanglement generation.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Scalable Multipartite Entanglement of Remote Rare-earth Ion Qubits [3.9514210525254785]
Single photon emitters with internal spin are leading contenders for developing quantum repeater networks.
We introduce a scalable approach to quantum networking that utilizes frequency erasing photon detection and real-time quantum control.
Our results provide a practical route to overcoming universal limitations imposed by non-uniformity and instability in solid-state emitters.
arXiv Detail & Related papers (2024-02-25T23:55:29Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Time-resolved Hanbury Brown-Twiss interferometry of on-chip biphoton
frequency combs using Vernier phase modulation [0.0]
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems.
Measurement of the temporal auto-correlation function of the unheralded signal or idler photons comprising the BFC is a key tool for characterizing their spectral purity.
We propose a scheme to circumvent this challenge through electro-optic phase modulation.
arXiv Detail & Related papers (2022-10-11T17:08:22Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Dissipation-driven formation of entangled dark states in
strongly-coupled inhomogeneous many-qubit systems in solid-state nanocavities [0.0]
We study quantum dynamics of many-qubit systems strongly coupled to a quantized electromagnetic cavity field.
We show that depending on the initial quantum state preparation, an ensemble of qubits can evolve into a rich variety of many-qubit entangled states.
arXiv Detail & Related papers (2022-07-19T19:33:32Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Implementing two-photon three-degree-of-freedom hyper-parallel
controlled phase flip gate through cavity-assisted interactions [0.0]
We present a method to implement a hyper-parallel controlled-phase-flip (hyper-CPF) gate for frequency-, spatial-, and time-bin-encoded qubits.
The scheme is specifically advantageous in decreasing against the dissipate noise, increasing the quantum channel capacity, and reducing the quantum resource overhead.
arXiv Detail & Related papers (2020-04-06T08:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.