Equivariant Neural Tangent Kernels
- URL: http://arxiv.org/abs/2406.06504v1
- Date: Mon, 10 Jun 2024 17:43:13 GMT
- Title: Equivariant Neural Tangent Kernels
- Authors: Philipp Misof, Pan Kessel, Jan E. Gerken,
- Abstract summary: We give explicit expressions for neural tangent kernels (NTKs) of group convolutional neural networks.
In numerical experiments, we demonstrate superior performance for equivariant NTKs over non-equivariant NTKs on a classification task for medical images.
- Score: 2.373992571236766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Equivariant neural networks have in recent years become an important technique for guiding architecture selection for neural networks with many applications in domains ranging from medical image analysis to quantum chemistry. In particular, as the most general linear equivariant layers with respect to the regular representation, group convolutions have been highly impactful in numerous applications. Although equivariant architectures have been studied extensively, much less is known about the training dynamics of equivariant neural networks. Concurrently, neural tangent kernels (NTKs) have emerged as a powerful tool to analytically understand the training dynamics of wide neural networks. In this work, we combine these two fields for the first time by giving explicit expressions for NTKs of group convolutional neural networks. In numerical experiments, we demonstrate superior performance for equivariant NTKs over non-equivariant NTKs on a classification task for medical images.
Related papers
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
This paper presents two models of neural-networks and their training applicable to neural networks of arbitrary width, depth and topology.
We also present an exact novel representor theory for layer-wise neural network training with unregularized gradient descent in terms of a local-extrinsic neural kernel (LeNK)
This representor theory gives insight into the role of higher-order statistics in neural network training and the effect of kernel evolution in neural-network kernel models.
arXiv Detail & Related papers (2024-05-24T06:30:36Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism [12.008737454250463]
We propose using fusion diagrams, a technique widely employed in simulating SU($2$)-symmetric quantum many-body problems, to design new equivariant components for equivariant neural networks.
When applied to particles within a given local neighborhood, the resulting components, which we term "fusion blocks," serve as universal approximators of any continuous equivariant function.
Our approach, which combines tensor networks with equivariant neural networks, suggests a potentially fruitful direction for designing more expressive equivariant neural networks.
arXiv Detail & Related papers (2022-11-14T16:06:59Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
Currently there exists rather promising new trend in machine leaning (ML) based on the relationship between neural networks (NN) and Gaussian processes (GP)
In this work we establish a relationship between the many-channel limit for CNNs equivariant with respect to two-dimensional Euclidean group with vector-valued neuron activations and the corresponding independently introduced equivariant Gaussian processes (GP)
arXiv Detail & Related papers (2022-09-17T17:02:35Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Group-invariant tensor train networks for supervised learning [0.0]
We introduce a new numerical algorithm to construct a basis of tensors that are invariant under the action of normal matrix representations.
The group-invariant tensors are then combined into a group-invariant tensor train network, which can be used as a supervised machine learning model.
arXiv Detail & Related papers (2022-06-30T06:33:08Z) - Why Quantization Improves Generalization: NTK of Binary Weight Neural
Networks [33.08636537654596]
We take the binary weights in a neural network as random variables under rounding, and study the distribution propagation over different layers in the neural network.
We propose a quasi neural network to approximate the distribution propagation, which is a neural network with continuous parameters and smooth activation function.
arXiv Detail & Related papers (2022-06-13T06:11:21Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
We introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables.
We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST.
We demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
arXiv Detail & Related papers (2021-09-03T09:25:57Z) - Equivariant geometric learning for digital rock physics: estimating
formation factor and effective permeability tensors from Morse graph [7.355408124040856]
We present a SE(3)-equivariant graph neural network (GNN) approach that directly predicts formation factor and effective permeability from micro-CT images.
FFT solvers are established to compute both the formation factor and effective permeability, while the topology and geometry of the pore space are represented by a persistence-based Morse graph.
arXiv Detail & Related papers (2021-04-12T16:28:25Z) - Mathematical Models of Overparameterized Neural Networks [25.329225766892126]
We will focus on the analysis of two-layer neural networks, and explain the key mathematical models.
We will then discuss challenges in understanding deep neural networks and some current research directions.
arXiv Detail & Related papers (2020-12-27T17:48:31Z) - Theoretical Aspects of Group Equivariant Neural Networks [9.449391486456209]
Group equivariant neural networks have been explored in the past few years and are interesting from theoretical and practical standpoints.
They leverage concepts from group representation theory, non-commutative harmonic analysis and differential geometry.
In practice, they have been shown to reduce sample and model complexity, notably in challenging tasks where input transformations such as arbitrary rotations are present.
arXiv Detail & Related papers (2020-04-10T17:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.