論文の概要: Quantifying fault tolerant simulation of strongly correlated systems using the Fermi-Hubbard model
- arxiv url: http://arxiv.org/abs/2406.06511v1
- Date: Mon, 10 Jun 2024 17:50:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 12:29:56.369616
- Title: Quantifying fault tolerant simulation of strongly correlated systems using the Fermi-Hubbard model
- Title(参考訳): Fermi-Hubbardモデルを用いた強相関系の耐故障性シミュレーションの定量化
- Authors: Anjali A. Agrawal, Tyler L. Wilson, S. N. Saadatmand, Mark J. Hodson, Josh Y. Mutus, Athena Caesura, Peter D. Johnson, Alexander F. Kemper,
- Abstract要約: 強い相関のある物質の全体的理解を構築することが重要である。
フォールトトレラントな量子コンピュータは、これらの困難を克服するための道として提案されている。
我々は, 耐故障性量子コンピュータを用いて, 実験量を得るために必要な資源コストを見積もる。
- 参考スコア(独自算出の注目度): 34.45444481504274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the physics of strongly correlated materials is one of the grand challenge problems for physics today. A large class of scientifically interesting materials, from high-$T_c$ superconductors to spin liquids, involve medium to strong correlations, and building a holistic understanding of these materials is critical. Doing so is hindered by the competition between the kinetic energy and Coulomb repulsion, which renders both analytic and numerical methods unsatisfactory for describing interacting materials. Fault-tolerant quantum computers have been proposed as a path forward to overcome these difficulties, but this potential capability has not yet been fully assessed. Here, using the multi-orbital Fermi-Hubbard model as a representative model and a source of scalable problem specifications, we estimate the resource costs needed to use fault-tolerant quantum computers for obtaining experimentally relevant quantities such as correlation function estimation. We find that advances in quantum algorithms and hardware will be needed in order to reduce quantum resources and feasibly address utility-scale problem instances.
- Abstract(参考訳): 強い相関を持つ物質の物理学を理解することは、今日の物理学の大きな課題の1つである。
高いT_c$超伝導体からスピン液体まで、多くの科学的に興味深い物質が中性から強い相関関係を持ち、これらの物質を総合的に理解することは非常に重要である。
運動エネルギーとクーロン反発の競合によって妨げられ、相互作用する物質を記述するのに不十分な解析的手法と数値的手法の両方が引き起こされる。
フォールトトレラントな量子コンピュータはこれらの困難を克服するための道として提案されているが、この潜在的な能力はまだ十分に評価されていない。
本稿では,多軌道モデルであるFermi-Hubbardモデルを代表モデルおよび拡張性のある問題仕様の情報源として利用し,相関関数推定などの実験的な量の取得にフォールトトレラント量子コンピュータを使用するために必要な資源コストを推定する。
量子アルゴリズムとハードウェアの進歩は、量子資源を減らし、実用規模の問題インスタンスに対処するために必要となる。
関連論文リスト
- Self-Consistent Determination of Single-Impurity Anderson Model Using Hybrid Quantum-Classical Approach on a Spin Quantum Simulator [3.5919681412083038]
本稿では,相関物質に対するハイブリッド量子古典的アプローチを実験的に実証する。
我々は計算の最も計算に要求される側面、すなわちグリーン関数の計算に対処する。
制御率の高い量子ビットの数は増え続けており、実験結果によりさらに複雑なモデルの解法が導かれる。
論文 参考訳(メタデータ) (2024-10-10T10:49:40Z) - Ground states of strongly-correlated materials on quantum computers using ab initio downfolding [1.2912607909040075]
Ab initio のダウンフォールディングは、正確な多体ハミルトニアンを導出する方法として登場した。
本稿では, 量子コンピュータを用いて, 強相関系の基底状態特性を正確に記述することを提案する。
論文 参考訳(メタデータ) (2024-09-18T18:00:04Z) - From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
量子グラフニューラルネットワーク(QGNN)は、量子コンピューティングとグラフニューラルネットワーク(GNN)の新たな融合を表す。
本稿では,QGNNの現状を批判的にレビューし,様々なアーキテクチャを探求する。
我々は、高エネルギー物理学、分子化学、ファイナンス、地球科学など多種多様な分野にまたがる応用について論じ、量子的優位性の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-12T22:53:14Z) - Computational supremacy in quantum simulation [22.596358764113624]
超伝導量子アニールプロセッサは、シュリンガー方程式の解と密に一致してサンプルを生成することができることを示す。
我々は、合理的な時間枠内で量子アニールと同じ精度を達成できる既知のアプローチは存在しないと結論づける。
論文 参考訳(メタデータ) (2024-03-01T19:00:04Z) - Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions [20.785521465797203]
材料科学におけるハードな計算タスクは、既存の高性能スーパーコンピュータセンターの限界を延長する。
一方、量子コンピューティングは、材料科学に必要な多くの計算タスクを加速する可能性を持つ新興技術である。
論文 参考訳(メタデータ) (2023-12-14T18:14:22Z) - Dynamical mean-field theory for the Hubbard-Holstein model on a quantum
device [0.0]
本稿では,IBM 27-qubit Quantum Falcon Processor Kawasaki上でのHubbard-Holsteinモデルに対する動的平均場理論(DMFT)不純物問題の解法について報告する。
これにより、周波数依存相互作用を伴うボゾン自由度と不純物問題に結合した強い相関電子系を研究できる可能性が開ける。
論文 参考訳(メタデータ) (2023-01-05T00:36:21Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
我々は、現在の量子ハードウェアとエラー軽減プロトコルを使用して、高度に単純化された核モデルに対する応答関数を計算する。
この研究では、現在の量子ハードウェアとエラー軽減プロトコルを用いて、4つの格子上に3つの区別可能な核子を持つ2次元のフェルミ・ハバードモデルに対する応答関数を計算する。
論文 参考訳(メタデータ) (2021-11-04T16:25:33Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
本稿では,現在発生している量子デバイスを用いたニュートリノ相互作用系の最初のシミュレーションを行う。
量子ビットの自然接続における制限を克服し、それをリアルタイムに絡み合いの進化を追跡する戦略を導入する。
論文 参考訳(メタデータ) (2021-02-24T20:51:25Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
論文は、非平衡状態における強相関量子系の量子力学に関するものである。
本研究の主な成果は, 臨界ダイナミクスのシグナチャ, 超ストロング結合のテストベッドとしての駆動ディックモデル, キブルズルーク機構の3つにまとめることができる。
論文 参考訳(メタデータ) (2020-07-23T19:05:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。