Quantum Positional Encodings for Graph Neural Networks
- URL: http://arxiv.org/abs/2406.06547v1
- Date: Tue, 21 May 2024 17:56:33 GMT
- Title: Quantum Positional Encodings for Graph Neural Networks
- Authors: Slimane Thabet, Mehdi Djellabi, Igor Sokolov, Sachin Kasture, Louis-Paul Henry, Loïc Henriet,
- Abstract summary: We propose novel families of positional encodings tailored to graph neural networks obtained with quantum computers.
Our inspiration stems from the recent advancements in quantum processing units, which offer computational capabilities beyond the reach of classical hardware.
- Score: 1.9791587637442671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose novel families of positional encodings tailored to graph neural networks obtained with quantum computers. These encodings leverage the long-range correlations inherent in quantum systems that arise from mapping the topology of a graph onto interactions between qubits in a quantum computer. Our inspiration stems from the recent advancements in quantum processing units, which offer computational capabilities beyond the reach of classical hardware. We prove that some of these quantum features are theoretically more expressive for certain graphs than the commonly used relative random walk probabilities. Empirically, we show that the performance of state-of-the-art models can be improved on standard benchmarks and large-scale datasets by computing tractable versions of quantum features. Our findings highlight the potential of leveraging quantum computing capabilities to enhance the performance of transformers in handling graph data.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Enhancing Graph Neural Networks with Quantum Computed Encodings [1.884651553431727]
We propose novel families of positional encodings tailored for graph transformers.
These encodings leverage the long-range correlations inherent in quantum systems.
We show that the performance of state-of-the-art models can be improved on standard benchmarks and large-scale datasets.
arXiv Detail & Related papers (2023-10-31T14:56:52Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Quantum machine learning of graph-structured data [0.38581147665516596]
We consider graph-structured quantum data and describe how to carry out its quantum machine learning via quantum neural networks.
We explain how to systematically exploit this additional graph structure to improve quantum learning algorithms.
arXiv Detail & Related papers (2021-03-19T14:39:19Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum State Discrimination on Reconfigurable Noise-Robust Quantum
Networks [6.85316573653194]
A fundamental problem in Quantum Information Processing is the discrimination amongst a set of quantum states of a system.
In this paper, we address this problem on an open quantum system described by a graph, whose evolution is defined by a Quantum Walk.
We optimize the parameters of the network to obtain the highest probability of correct discrimination.
arXiv Detail & Related papers (2020-03-25T19:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.