Quantum machine learning of graph-structured data
- URL: http://arxiv.org/abs/2103.10837v1
- Date: Fri, 19 Mar 2021 14:39:19 GMT
- Title: Quantum machine learning of graph-structured data
- Authors: Kerstin Beer, Megha Khosla, Julius K\"ohler, Tobias J. Osborne
- Abstract summary: We consider graph-structured quantum data and describe how to carry out its quantum machine learning via quantum neural networks.
We explain how to systematically exploit this additional graph structure to improve quantum learning algorithms.
- Score: 0.38581147665516596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph structures are ubiquitous throughout the natural sciences. Here we
consider graph-structured quantum data and describe how to carry out its
quantum machine learning via quantum neural networks. In particular, we
consider training data in the form of pairs of input and output quantum states
associated with the vertices of a graph, together with edges encoding
correlations between the vertices. We explain how to systematically exploit
this additional graph structure to improve quantum learning algorithms. These
algorithms are numerically simulated and exhibit excellent learning behavior.
Scalable quantum implementations of the learning procedures are likely feasible
on the next generation of quantum computing devices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Positional Encodings for Graph Neural Networks [1.9791587637442671]
We propose novel families of positional encodings tailored to graph neural networks obtained with quantum computers.
Our inspiration stems from the recent advancements in quantum processing units, which offer computational capabilities beyond the reach of classical hardware.
arXiv Detail & Related papers (2024-05-21T17:56:33Z) - Learnability of a hybrid quantum-classical neural network for graph-structured quantum data [0.0]
We build a hybrid quantum-classical neural network with deep residual learning (Res-HQCNN) with graph-structured quantum data.
We show that the using of information about graph structures in quantum data can lead to better learning efficiency compared with the state-of-the-art model.
arXiv Detail & Related papers (2024-01-28T14:06:06Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum neural networks [0.0]
This thesis combines two of the most exciting research areas of the last decades: quantum computing and machine learning.
We introduce dissipative quantum neural networks (DQNNs), which are capable of universal quantum computation and have low memory requirements while training.
arXiv Detail & Related papers (2022-05-17T07:47:00Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
Graph Edit Distance (GED) measures the degree of (dis)similarity between two graphs in terms of the operations needed to make them identical.
In this paper we present a comparative study of two quantum approaches to computing GED.
arXiv Detail & Related papers (2021-11-19T12:35:26Z) - Quantum Algorithms for Unsupervised Machine Learning and Neural Networks [2.28438857884398]
We introduce quantum algorithms to solve tasks such as matrix product or distance estimation.
These results are then used to develop new quantum algorithms for unsupervised machine learning.
We will also present new quantum algorithms for neural networks, or deep learning.
arXiv Detail & Related papers (2021-11-05T16:36:09Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.