SMS Spam Detection and Classification to Combat Abuse in Telephone Networks Using Natural Language Processing
- URL: http://arxiv.org/abs/2406.06578v1
- Date: Tue, 4 Jun 2024 13:44:36 GMT
- Title: SMS Spam Detection and Classification to Combat Abuse in Telephone Networks Using Natural Language Processing
- Authors: Dare Azeez Oyeyemi, Adebola K. Ojo,
- Abstract summary: This research addresses the pervasive issue of SMS spam, which poses threats to users' privacy and security.
The study introduces a novel approach utilizing Natural Language Processing (NLP) and machine learning models, particularly BERT (Bidirectional Representations from Transformers) for spam detection and classification.
Evaluation results revealed that the Na"ive Bayes + BERT model achieves the highest accuracy at 97.31% with the fastest execution time of 0.3 seconds on the test dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the modern era, mobile phones have become ubiquitous, and Short Message Service (SMS) has grown to become a multi-million-dollar service due to the widespread adoption of mobile devices and the millions of people who use SMS daily. However, SMS spam has also become a pervasive problem that endangers users' privacy and security through phishing and fraud. Despite numerous spam filtering techniques, there is still a need for a more effective solution to address this problem [1]. This research addresses the pervasive issue of SMS spam, which poses threats to users' privacy and security. Despite existing spam filtering techniques, the high false-positive rate persists as a challenge. The study introduces a novel approach utilizing Natural Language Processing (NLP) and machine learning models, particularly BERT (Bidirectional Encoder Representations from Transformers), for SMS spam detection and classification. Data preprocessing techniques, such as stop word removal and tokenization, are applied, along with feature extraction using BERT. Machine learning models, including SVM, Logistic Regression, Naive Bayes, Gradient Boosting, and Random Forest, are integrated with BERT for differentiating spam from ham messages. Evaluation results revealed that the Na\"ive Bayes classifier + BERT model achieves the highest accuracy at 97.31% with the fastest execution time of 0.3 seconds on the test dataset. This approach demonstrates a notable enhancement in spam detection efficiency and a low false-positive rate. The developed model presents a valuable solution to combat SMS spam, ensuring faster and more accurate detection. This model not only safeguards users' privacy but also assists network providers in effectively identifying and blocking SMS spam messages.
Related papers
- ExplainableDetector: Exploring Transformer-based Language Modeling Approach for SMS Spam Detection with Explainability Analysis [2.849988619791745]
The number of SMS spam has expanded significantly in recent years.
The unstructured format of SMS data creates significant challenges for SMS spam detection.
We employ optimized and fine-tuned transformer-based Large Language Models (LLMs) to solve the problem of spam message detection.
arXiv Detail & Related papers (2024-05-12T11:42:05Z) - Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore [51.65730053591696]
We propose a simple but effective black-box zero-shot detection approach.
It is predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts.
Our method achieves an average AUROC of 98.7% and shows strong robustness against paraphrase and adversarial perturbation attacks.
arXiv Detail & Related papers (2024-05-07T12:57:01Z) - SpamDam: Towards Privacy-Preserving and Adversary-Resistant SMS Spam Detection [2.0355793807035094]
SpamDam is a SMS spam detection framework designed to overcome key challenges in detecting and understanding SMS spam.
We have compiled over 76K SMS spam messages from Twitter and Weibo between 2018 and 2023, forming the largest dataset of its kind.
We have rigorously tested the adversarial robustness of SMS spam detection models, introducing the novel reverse backdoor attack.
arXiv Detail & Related papers (2024-04-15T06:07:10Z) - Evaluating the Performance of ChatGPT for Spam Email Detection [9.585304538597414]
This study attempts to evaluate ChatGPT's capabilities for spam identification in both English and Chinese email datasets.
We employ ChatGPT for spam email detection using in-context learning, which requires a prompt instruction and a few demonstrations.
We also investigate how the number of demonstrations in the prompt affects the performance of ChatGPT.
arXiv Detail & Related papers (2024-02-23T04:52:08Z) - Commercial Anti-Smishing Tools and Their Comparative Effectiveness Against Modern Threats [0.0]
We developed a test bed for measuring the effectiveness of popular anti-smishing tools against fresh smishing attacks.
Most anti-phishing apps and bulk messaging services didn't filter smishing messages beyond the carrier blocking.
While carriers did not block any benign messages, they were only able to reach a 25-35% blocking rate for smishing messages.
arXiv Detail & Related papers (2023-09-14T06:08:22Z) - Can AI-Generated Text be Reliably Detected? [54.670136179857344]
Unregulated use of LLMs can potentially lead to malicious consequences such as plagiarism, generating fake news, spamming, etc.
Recent works attempt to tackle this problem either using certain model signatures present in the generated text outputs or by applying watermarking techniques.
In this paper, we show that these detectors are not reliable in practical scenarios.
arXiv Detail & Related papers (2023-03-17T17:53:19Z) - Spam Detection Using BERT [0.0]
We build a spam detector using BERT pre-trained model that classifies emails and messages by understanding to their context.
Our spam detector performance was 98.62%, 97.83%, 99.13% and 99.28% respectively.
arXiv Detail & Related papers (2022-06-06T09:09:40Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
In the era of deep learning, a user often leverages a third-party machine learning tool to train a deep neural network (DNN) classifier.
In an information embedding attack, an attacker is the provider of a malicious third-party machine learning tool.
In this work, we aim to design information embedding attacks that are verifiable and robust against popular post-processing methods.
arXiv Detail & Related papers (2020-10-26T17:42:42Z) - TextHide: Tackling Data Privacy in Language Understanding Tasks [54.11691303032022]
TextHide mitigates privacy risks without slowing down training or reducing accuracy.
It requires all participants to add a simple encryption step to prevent an eavesdropping attacker from recovering private text data.
We evaluate TextHide on the GLUE benchmark, and our experiments show that TextHide can effectively defend attacks on shared gradients or representations.
arXiv Detail & Related papers (2020-10-12T22:22:15Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
Adrial attacks for discrete data (such as texts) are more challenging than continuous data (such as images)
We propose textbfBERT-Attack, a high-quality and effective method to generate adversarial samples.
Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage.
arXiv Detail & Related papers (2020-04-21T13:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.