Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore
- URL: http://arxiv.org/abs/2405.04286v1
- Date: Tue, 7 May 2024 12:57:01 GMT
- Title: Who Wrote This? The Key to Zero-Shot LLM-Generated Text Detection Is GECScore
- Authors: Junchao Wu, Runzhe Zhan, Derek F. Wong, Shu Yang, Xuebo Liu, Lidia S. Chao, Min Zhang,
- Abstract summary: We propose a simple but effective black-box zero-shot detection approach.
It is predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts.
Our method achieves an average AUROC of 98.7% and shows strong robustness against paraphrase and adversarial perturbation attacks.
- Score: 51.65730053591696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The efficacy of an large language model (LLM) generated text detector depends substantially on the availability of sizable training data. White-box zero-shot detectors, which require no such data, are nonetheless limited by the accessibility of the source model of the LLM-generated text. In this paper, we propose an simple but effective black-box zero-shot detection approach, predicated on the observation that human-written texts typically contain more grammatical errors than LLM-generated texts. This approach entails computing the Grammar Error Correction Score (GECScore) for the given text to distinguish between human-written and LLM-generated text. Extensive experimental results show that our method outperforms current state-of-the-art (SOTA) zero-shot and supervised methods, achieving an average AUROC of 98.7% and showing strong robustness against paraphrase and adversarial perturbation attacks.
Related papers
- Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
Large language models (LLMs) have transformed human writing by enhancing grammar correction, content expansion, and stylistic refinement.
Existing detection methods, which mainly rely on single-feature analysis and binary classification, often fail to effectively identify LLM-generated text in academic contexts.
We propose a novel Multi-level Fine-grained Detection framework that detects LLM-generated text by integrating low-level structural, high-level semantic, and deep-level linguistic features.
arXiv Detail & Related papers (2024-10-18T07:25:00Z) - Training-free LLM-generated Text Detection by Mining Token Probability Sequences [18.955509967889782]
Large language models (LLMs) have demonstrated remarkable capabilities in generating high-quality texts across diverse domains.
Training-free methods, which focus on inherent discrepancies through carefully designed statistical features, offer improved generalization and interpretability.
We introduce a novel training-free detector, termed textbfLastde that synergizes local and global statistics for enhanced detection.
arXiv Detail & Related papers (2024-10-08T14:23:45Z) - Zero-Shot Detection of LLM-Generated Text using Token Cohesiveness [6.229124658686219]
We develop a generic dual-channel detection paradigm that uses token cohesiveness as a plug-and-play module to improve existing zero-shot detectors.
To calculate token cohesiveness, we use a few rounds of random token deletion and semantic difference measurement.
Experiments with four state-of-the-art base detectors on various datasets, source models, and evaluation settings demonstrate the effectiveness and generality of the proposed approach.
arXiv Detail & Related papers (2024-09-25T13:18:57Z) - ReMoDetect: Reward Models Recognize Aligned LLM's Generations [55.06804460642062]
Large language models (LLMs) generate human-preferable texts.
In this paper, we identify the common characteristics shared by these models.
We propose two training schemes to further improve the detection ability of the reward model.
arXiv Detail & Related papers (2024-05-27T17:38:33Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing.
It is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text.
We propose a simple yet efficient solution by ensembling predictions from multiple constituent LLMs.
arXiv Detail & Related papers (2023-11-06T13:11:02Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
We introduce a sentence-level detection challenge by synthesizing documents polished with large language models (LLMs)
We then propose textbfSequence textbfX (Check) textbfGPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection.
arXiv Detail & Related papers (2023-10-13T07:18:53Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOX is a framework that improves the robustness of LLM-generated-text detectors by allowing both the detector and the attacker to consider each other's output.
Experiments show that the proposed detector improves the detection performance on the attacker-generated texts by up to +41.3 points F1-score.
The detector shows a state-of-the-art detection performance: up to 96.9 points F1-score, beating existing detectors on non-attacked texts.
arXiv Detail & Related papers (2023-07-21T17:40:47Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
Large language models (LLMs) are remarkably close to high-quality human-authored text.
Existing detection tools can only differentiate between machine-generated and human-authored text.
We propose LLMDet, a model-specific, secure, efficient, and extendable detection tool.
arXiv Detail & Related papers (2023-05-24T10:45:16Z) - DPIC: Decoupling Prompt and Intrinsic Characteristics for LLM Generated Text Detection [56.513637720967566]
Large language models (LLMs) can generate texts that pose risks of misuse, such as plagiarism, planting fake reviews on e-commerce platforms, or creating inflammatory false tweets.
Existing high-quality detection methods usually require access to the interior of the model to extract the intrinsic characteristics.
We propose to extract deep intrinsic characteristics of the black-box model generated texts.
arXiv Detail & Related papers (2023-05-21T17:26:16Z) - DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability
Curvature [143.5381108333212]
We show that text sampled from an large language model tends to occupy negative curvature regions of the model's log probability function.
We then define a new curvature-based criterion for judging if a passage is generated from a given LLM.
We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection.
arXiv Detail & Related papers (2023-01-26T18:44:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.